Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 328: 118123, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38554854

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium, recognized as "Shihu" in traditional Chinese medicine, holds a rich history of medicinal utilization documented in the Chinese Pharmacopoeia. Ancient texts like "Shen Nong Ben Cao Jing" extol Dendrobium's virtues as a superior herbal medicine fortifying "Yin" and invigorating the five viscera. Dendrobium is extensively employed for the treatment of gastrointestinal inflammatory disorders, showcasing significant therapeutic efficacy, particularly against ulcerative colitis (UC), within the realm of Chinese ethnopharmacology. Dendrobium plays crucial pharmacological roles due to its rich content of polysaccharides, alkaloids, phenanthrenes, and bibenzyls. Gigantol, a prominent bibenzyl compound, stands out as one of the most vital active constituents within Dendrobium, the gigantol content of Dendrobium leaves can reach approximately 4.79 µg/g. Its significance lies in being recognized as a noteworthy anti-inflammatory compound derived from Dendrobium. AIM OF THE STUDY: Given the pivotal role of gigantol as a primary active substance in Dendrobium, the therapeutic potential of gigantol for gastrointestinal diseases remains enigmatic. Our present investigation aimed to evaluate the therapeutic effects of gigantol on dextran sulfate sodium (DSS)-induced colitis and reveal its potential mechanism in countering UC activity. MATERIALS AND METHODS: The protective efficacy of gigantol against colitis was assessed by examining the histopathological changes and conducting biochemical analyses of colon from DSS-challenged mice. Assessments focused on gigantol's impact on improving the intestinal epithelial barrier and its anti-inflammatory effects in colonic tissues of colitis mice. Investigative techniques included the exploration of the macrophage inflammatory signaling pathway via qPCR and Western blot analyses. In vitro studies scrutinized macrophage adhesion, migration, and chemotaxis utilizing transwell and Zigmond chambers. Furthermore, F-actin and Rac1 activation assays detailed cellular cytoskeletal remodeling. The potential therapeutic target of gigantol was identified and validated through protein binding analysis, competitive enzyme-linked immunosorbent assay (ELISA), cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) assay. The binding sites between gigantol and its target were predicted via molecular docking. RESULTS: Gigantol ameliorated symptoms of DSS-induced colitis, rectified damage to the intestinal barrier, and suppressed the production of pro-inflammatory cytokines in colonic tissues. Intriguingly, gigantol significantly curtailed NF-κB signaling activation in the colons of DSS-induced colitis mice. Notably, gigantol impaired the ß2 integrin-dependent adhesion and migratory capacity of RAW264.7 cells. Moreover, gigantol notably influenced the cytoskeleton remodeling of RAW264.7 cells by suppressing Vav1 phosphorylation and Rac1 activation. Mechanistically, gigantol interacted with ß2 integrin, subsequently diminishing binding affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: In conclusion, these findings elucidate that gigantol ameliorates DSS-induced colitis by antagonizing ß2 integrin-mediated macrophage adhesion, migration, and chemotaxis, thus it may impede macrophage recruitment and infiltration into colonic tissues. This study suggests that gigantol shows promise as a viable candidate for clinical colitis therapy.


Assuntos
Bibenzilas , Colite Ulcerativa , Colite , Guaiacol/análogos & derivados , Camundongos , Animais , Antígenos CD18/metabolismo , Antígenos CD18/uso terapêutico , Colo , Quimiotaxia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Bibenzilas/farmacologia , Anti-Inflamatórios/efeitos adversos , Macrófagos/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , NF-kappa B/metabolismo
2.
J Ethnopharmacol ; 314: 116626, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37187359

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The dried fruit of Gardenia jasminoides Ellis (Zhizi in Chinese) is a traditional medicine used for thousands of years in China, Japan and Korea. Zhizi was recorded in Shennong Herbal, as a folk medicine, it reduces fever and treats gastrointestinal disturbance with antiphlogistic effects. Geniposide, an iridoid glycoside, is an important bioactive compound derived from Zhizi and possesses remarkable antioxidant and anti-inflammatory capacities. The pharmacological efficacy of Zhizi is highly related to the antioxidant and anti-inflammatory effects of geniposide. AIM OF THE STUDY: Ulcerative colitis (UC) is a common chronic gastrointestinal disease as a global public health threat. Redox imbalance is an essential factor in the progression and recurrence of UC. This study aimed to explore the therapeutic effect of geniposide on colitis and uncover the underlying mechanisms of geniposide-mediated antioxidant and anti-inflammatory activities. EXPERIMENTAL DESIGN: The study design involved investigating the novel mechanism by which geniposide ameliorates dextran sulfate sodium (DSS)-induced colitis in vivo and lipopolysaccharide (LPS)-challenged colonic epithelial cells in vitro. MATERIALS AND METHODS: The protective effect of geniposide against colitis was evaluated by histopathologic observation and biochemical analysis of colonic tissues in DSS-induced colitis mice. The antioxidant and anti-inflammatory effects of geniposide were evaluated in both DSS-induced colitis mice and LPS-challenged colonic epithelial cells. Immunoprecipitation, drug affinity responsive target stability (DARTS), and molecular docking were performed to identify the potential therapeutic target of geniposide and the potential binding sites and patterns. RESULTS: Geniposide ameliorated the symptoms of DSS-induced colitis and colonic barrier injury, inhibited pro-inflammatory cytokine expression, and suppressed activation of the NF-κB signaling in colonic tissues of DSS-challenged mice. Geniposide also ameliorated lipid peroxidation and restored redox homeostasis in DSS-treated colonic tissues. In addition, in vitro experiments also showed that geniposide exhibited significant anti-inflammatory and antioxidant activity, as evidenced by suppressed IκB-α and p65 phosphorylation and IκB-α degradation, and enhanced the phosphorylation and transcriptional activity of Nrf2 in LPS-treated Caco2 cells. ML385, a specific Nrf2 inhibitor, abolished the protective effect of geniposide against LPS-induced inflammation. Mechanistically, geniposide could bind to KEAP1, thereby disrupting the interaction between KEAP1 and Nrf2, preventing Nrf2 from degradation and activating the Nrf2/ARE signaling pathway, ultimately suppressing the onset of inflammation caused by redox imbalance. CONCLUSIONS: Geniposide ameliorates colitis by activation of Nrf2/ARE signaling, while preventing colonic redox imbalance and inflammatory damage, indicating that geniposide can be considered as a promising lead compound for the treatment of colitis.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sulfato de Dextrana/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Células CACO-2 , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Transdução de Sinais , Colo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA