Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 246: 115895, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048720

RESUMO

Combined photothermal therapy and nitric oxide (NO)-mediated gas therapy has shown great potential as a cancer treatment. However, the on-demand release of NO at a high concentration presents a challenge owing to the lack of an ideal bio-transducer with a high loading capacity of NO donors and sufficient energy to induce NO release. Here, we present a new 2D BiTiS3 nanosheet that is synthesized, loaded with the NO donor (BNN6), and conjugated with PEG-iRGD to produce a multifunctional bio-transducer (BNN6-BiTiS3-iRGD) for the on-demand production of NO. The BiTiS3 nanosheets not only have a high loading capacity of NO donors (750%), but also exhibit a high photothermal conversion efficiency (59.5%) after irradiation by a 1064-nm laser at 0.5 W/cm2. As a result of the above advantages, the temporal-controllable generation of NO within a large dynamic range (from 0 to 344 µM) is achieved by adjusting power densities, which is among the highest efficiency values reported for NO generators so far. Moreover, the targeted accumulation of BNN6-BiTiS3-iRGD at tumor sites leads to spatial-controllable NO release. In vitro and in vivo assessments demonstrate synergistic NO gas therapy with mild photothermal therapy based on BNN6-BiTiS3-iRGD. Our work provides insights into the design and application of other 2D nanomaterial-based therapeutic platforms.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Animais , Óxido Nítrico , Bitis , Luz , Fototerapia , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia
2.
Sci Total Environ ; 912: 168724, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38007135

RESUMO

The vertical sequestration of dissolved organic matter (DOM) by iron minerals along the soil profile is assumed to be central to the long-term storage of the soil organic matter (SOM) pool. However, there is limited information available about how the interaction between DOM and natural iron-bearing minerals shape mineral SOM associations quantitatively and qualitatively in forest subsoils. Here, we systematically investigated the influences of forest organic layer-pyrolyzed biochar-derived DOM (BDOM) and leached DOM (LDOM) on quantity, molecular composition, and diversity of deposition layer-derived iron minerals-associated OM by using Fourier transform ion cyclotron resonance mass spectrometry and other complementary spectroscopy. Results indicated natural iron minerals (FeOx1 and FeOx2) had a greater capacity for sorbing LDOM with higher aromaticity and molecular weight than those of BDOM, and the higher proportion of goethite and short-order-range phase in natural iron minerals was closely related to the increased OM adsorption capacity. We also observed the preferential sorption of oxygen/nitrogen-rich polycyclic aromatic compounds and carboxylic-containing compounds in LDOM and concurrent the potential release of lignin-like/aromatics compounds and carboxyl/nitrogen-less aliphatic compounds from native OM coprecipitates into the solution. However, unsaturated and oxidized phenolic compounds in BDOM had a stronger affinity for FeOx through hydrophobic partitioning and specific polar interactions, and concomitantly the partial release of nitrogen-free aliphatic and other carboxyl-rich compounds. More nitrogen structures in aromatic-containing compounds can improve the saturation level and polarity of BDOM. Compared with BDOM, LDOM exerted a stronger control over the exchange of native OM from subsoil natural iron-bearing minerals and substantially enhanced the molecular diversity of the reconstituted mineral-associated OM during the adsorptive fractionation. Overall, these findings suggest the compositional evolution of DOM profoundly shapes SOM formation and persistence in forest subsoils, which is the key to understanding DOM cycling and contaminant fate during its passage through the soil.

3.
Adv Sci (Weinh) ; 11(3): e2305762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38115673

RESUMO

The photothermal performance of black phosphorus (BP) in the near infrared (NIR)-II bio-window (1000-1500 nm) is low, which limits its biomedical applications. Herein, ultrasmall nickel phosphide quantum dots (Ni2 P QDs) are synthesized with BP quantum dots (BPQDs) as the template by topochemical transformation. The size of Ni2 P QDs is ≈3.5 nm, similar to that of BPQDs, whereas the absorption and photothermal conversion efficiency of Ni2 P QDs at 1064 nm (43.5%) are significantly improved compared with those of BPQDs. To facilitate in vivo applications, an Ni2 P QDs-based liposomal nano-platform (Ni2 P-DOX@Lipo-cRGD) is designed by incorporation of Ni2 P QDs and doxorubicin (DOX) into liposomal bilayers and the interior, respectively. The encapsulated DOX is responsively released from liposomes upon 1064-nm laser irradiation owing to the photothermal effect of Ni2 P QDs, and the drug release rate and amount are controlled by the light intensity and exposure time. In vivo, experiments show that Ni2 P-DOX@Lipo-cRGD has excellent tumor target capability and biocompatibility, as well as complete tumor ablation through the combination of photothermal therapy and chemotherapy. The work provides a new paradigm for the NIR-II transformation of nano-materials and may shed light on the construction of multifunctional nano-platforms for cancer treatment.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Fototerapia , Fósforo , Doxorrubicina , Lipossomos , Neoplasias/tratamento farmacológico
4.
Int J Chron Obstruct Pulmon Dis ; 18: 2439-2456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955027

RESUMO

Purpose: Chronic obstructive pulmonary disease (COPD) is a disease characterized by frequent acute exacerbations (AEs), especially in severe and very severe cases. We aimed to evaluate the efficacy and safety of Bu-fei Yi-shen granules (BYGs) for COPD. Patients and Methods: We conducted a multicenter, randomized, double-blinded, placebo-controlled trial of 348 COPD patients with GOLD 3-4 COPD. The patients were randomly assigned into experimental or control groups in a 1:1 ratio. Patients in the experimental group were prescribed BYG, while those in the control group were administered a placebo, orally, twice daily, with 5 days on and 2 days off per week for 52 weeks. The outcomes included AEs, pulmonary function, clinical signs and symptoms, dyspnea scores (mMRC), quality of life scores, and a 6-minute walk test (6MWT). Results: A total of 280 patients completed the trial, including 135 patients in the experimental group and 145 in the control group. Compared to the control group, significant differences were observed in frequencies of AEs (mean difference: -0.35; 95% CI: -0.61, -0.10; P = 0.006) and AE-related hospitalizations (-0.18; 95% CI: -0.36, -0.01; P = 0.04), 6MWD (40.93 m; 95% CI: 32.03, 49.83; P < 0.001), mMRC (-0.57; 95% CI: -0.76, -0.37; P < 0.001), total symptoms (-2.18; 95% CI: -2.84, -1.53; P < 0.001), SF-36 (11.60; 95% CI: 8.23, 14.97; P < 0.001), and mCOPD-PRO (-0.45; 95% CI: -0.57, -0.33; P < 0.001) after treatment. However, there were no significant differences in mortality, pulmonary function, and mESQ-PRO scores (P > 0.05). No obvious adverse events were observed. Conclusion: BYG, as compared to a placebo, could significantly reduce the frequencies of AEs and AE-related hospitalizations for GOLD 3-4 COPD patients. Clinical symptoms, treatment satisfaction, quality of life, and exercise capacity improved. There was no significant improvement in mortality and pulmonary function.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Qualidade de Vida , Pulmão , Dispneia , Caminhada
5.
J Colloid Interface Sci ; 652(Pt B): 1228-1239, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657222

RESUMO

Inspired by the bifunctional phototherapy agents (PTAs), constructing compact PTAs with efficient photothermal therapy (PTT) and photodynamic therapy (PDT) effects in the near-infrared (NIR-II) biowindow is crucial for high therapeutic efficacy. Herein, none-layered germanium (Ge) is transformed to layered Ge/germanium phosphide (Ge/GeP) structure, and a novel two-dimensional sheet-like compact S-scheme Ge/GeP in-plane heterostructure with a large extinction coefficient of 15.66 L/g cm-1 at 1,064 nm is designed and demonstrated. In addition to the outstanding photothermal effects, biocompatibility and degradability, type I and type II PDT effects are activated by a single laser. Furthermore, enhanced reactive oxygen species generation under longer wavelength NIR laser irradiation is achieved, and production of singlet oxygen and superoxide radical upon 1,064 nm laser irradiation is more than double that under 660 nm laser irradiation. The S-scheme charge transfer mechanism between Ge and GeP, is demonstrated by photo-irradiated Kelvin probe force microscopy and electron spin resonance analysis. Thus, the obtained S-scheme Ge/GeP in-plane heterostructure shows synergistic therapeutic effects of PTT/PDT both in vitro and in vivo in the NIR-II biowindow and the novel nanoplatform with excellent properties has large clinical potential.

6.
J Nanobiotechnology ; 21(1): 224, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443019

RESUMO

As a common tumor with high incidence, osteosarcoma possesses extremely poor prognosis and high mortality. Improving the survival of osteosarcoma patients is still a great challenge due to the precipice of advancement in treatment. In this study, a combination strategy of gene therapy and photothermal therapy (PTT) is developed for efficient treatment of osteosarcoma. Two-dimensional (2D) FePS3 nanosheets are synthesized and functionalized by poly-L-lysine-PEG-folic acid (PPF) to fabricate a multifunctional nanoplatform (FePS@PPF) for further loading microRNAs inhibitor, miR-19a inhibitor (anti-miR-19a). The photothermal conversion efficiency of FePS@PPF is up to 47.1% under irradiation by 1064 nm laser. In vitro study shows that anti-miR-19a can be efficiently internalized into osteosarcoma cells through the protection and delivery of FePS@PPF nanaocarrier, which induces up-regulation of PTEN protein and down-regulation p-AKT protein. After intravenous injection, the FePS@PPF nanoplatform specifically accumulates to tumor site of osteosarcoma-bearing mice. The in vitro and in vivo investigations reveal that the combined PTT-gene therapy displays most significant tumor ablation compared with monotherapy. More importantly, the good biodegradability promotes FePS@PPF to be cleared from body avoiding potential toxicity of long-term retention. Our work not only develops a combined strategy of NIR-II PTT and gene therapy mediated by anti-miR-19a/FePS@PPF but also provides insights into the design and applications of other nanotherapeutic platforms.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Animais , Camundongos , Terapia Fototérmica , Antagomirs , Fototerapia/métodos , Osteossarcoma/terapia , Neoplasias/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral
7.
Curr Med Chem ; 30(8): 935-952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35220933

RESUMO

Black phosphorus nanostructures (nano-BPs) mainly include BP nanosheets (BP NSs), BP quantum dots (BPQDs), and other nano-BPs-based particles at nanoscale. Firstly discovered in 2014, nano-BPs are one of the most popular nanomaterials. Different synthesis methods are discussed in short to understand the basic concepts and developments in synthesis. Exfoliated nano-BPs, i.e. nano-BPs possess high surface area, high photothermal conversion efficacy, excellent biocompatibility, high charge carrier mobility (~1000 cm-2V-1s-1), thermal conductivity of 86 Wm-1K-1; and these properties make it a highly potential candidate for fabrication of biosensing platform. These properties enable nano-BPs to be promising photothermal/drug delivery agents as well as in electrochemical data storage devices and sensing devices; and in super capacitors, photodetectors, photovoltaics and solar cells, LEDs, super-conductors, etc. Early diagnosis is very critical in the health sector scenarios. This review attempts to highlight the attempts made towards attaining stable BP, BP-aptamer conjugates for successful biosensing applications. BP-aptamer- based platforms are reviewed to highlight the significance of BP in detecting biological and physiological markers of cardiovascular diseases and cancer; to be useful in disease diagnosis and management.


Assuntos
Nanoestruturas , Neoplasias , Pontos Quânticos , Humanos , Fósforo/química , Nanoestruturas/química , Pontos Quânticos/química , Oligonucleotídeos , Biomarcadores
8.
Small ; 18(39): e2203284, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35971184

RESUMO

Although constructing heterostructures is considered as one of the most successful strategies to improve the activity of a catalyst, the heterostructures usually suffer from the cumbersome preparation treatments and low-yield. Inspired by a solid-phase solution-precipitation (SPSP) process, an approach for interface intensive heterostructures with high yield is developed. Herein, a black-phosphorus/iron-tetraphosphide (BP/FeP4 ) heterostructure is prepared mechanochemically with high transient pressure by the solid-phase ball milling approach. The BP/FeP4 heterostructure delivers excellent catalytic performance in the nitrogen reduction reaction (NRR) as exemplified by an NH3 yield of 77.6 µg h-1 mg cat . - 1 \[{\rm{mg}}_{{\rm{cat}}{\rm{.}}}^{{\bm{ - }}1}\] and Faradic efficiency of 62.9% (-0.2 V), which are superior to that of most NRR catalysts recently reported. Experimental investigation and density-functional theory calculation indicate the importance of excess phosphorus in the heterostructures on the NRR activity, which assists the Fe atom to activate N2 via adsorbing the H atom. The results demonstrate the great potential of this new type of heterostructures prepared by the SPSP approach. Benefiting from the simple preparation process and low cost, the heterostructures offer a new insight into the development of highly efficient catalysts.


Assuntos
Nitrogênio , Fósforo , Catálise , Ferro , Nitrogênio/química
9.
Front Pharmacol ; 13: 845856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586045

RESUMO

Gushiling capsule (GSLC) is an effective traditional Chinese medicine for the treatment of glucocorticoid-induced osteonecrosis of the femoral head (GIONFH). This study established the serum metabolite profiles of GSLC in rabbits and explored the metabolic mechanism and effect of GSLC on GIONFH. Seventy-five Japanese white rabbits were randomly divided into the control, model, and GSLC groups. The rabbits in the model group and the GSLC group received injection of prednisolone acetate. Meanwhile, rabbits in the GSLC group were treated by gavage at a therapeutic dose of GSLC once a day. The control group and the model group received the same volume of normal saline gavage. Three groups of serum samples were collected at different time points, and the changes in the metabolic spectrum were analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The resulting data set was analyzed using multivariate statistical analysis to identify potential biomarkers related to GSLC treatment. The metabolic pathway was analyzed by MetaboAnalyst 4.0 and a heatmap was constructed using the HEML1.0.3.7 software package. In addition, histopathological and radiography studies were carried out to verify the anti-GIONFH effects of GSLC. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) score plots revealed a significant separation trend between the control group and the model group and the GSLC group (1-3 weeks), but there were no significant differences in the GSLC group (4-6 weeks). Orthogonal PLS-DA (OPLS-DA) score plots also revealed an obvious difference between the model and the GSLC groups (4-6 weeks). Ten potential metabolite biomarkers, mainly phospholipids, were identified in rabbit serum samples and demonstrated to be associated with GIONFH. Hematoxylin and eosin staining and magnetic resonance imaging indicated that the pathological changes in femoral head necrosis in the GSLC group were less than in the model group, which was consistent with the improved serum metabolite spectrum. GSLC regulated the metabolic disorder of endogenous lipid components in GIONFH rabbits. GSLC may prevent and treat GIONFH mainly by regulating phospholipid metabolism in vivo.

10.
Talanta ; 237: 122978, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736700

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely applied in the analysis of phospholipids in biological samples. However, it remains a challenge to improve the sensitivity and reproducibility and to control the background noise of matrices. In this study, black phosphorus nanomaterial was used as the matrix of MALDI-MS, and microchannel technique was combined. This microchannel-integrated black phosphorus-assisted laser desorption/ionization (BPALDI) MS approach can effectively detect a variety of lipids with a small amount of sample, and has high sensitivity for phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) with a detection limit of 0.2 µg/mL. Compared with traditional matrices, BPALDI-MS has the advantages of high sensitivity, good reproducibility, and high salt tolerance. This method was successfully applied in the detection of serum PC/LPC ratios in children patients with asthma or bronchopneumonia. This work provides a novel application of black phosphorus matrix and microchannel technique, and gives new insights into method development of rapid screening and identification of disease indicators in biological fluids.


Assuntos
Fosfolipídeos , Fósforo , Criança , Humanos , Lasers , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Small ; 17(40): e2103239, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486220

RESUMO

Nanomaterial-based photothermal and photocatalytic therapies are effective against various types of cancers. However, combining two or more materials is considered necessary to achieve the synergistic anticancer effects of photothermal and photocatalytic therapy, which made the preparation process complicated. Herein, the authors describe simple 2D titanium diselenide (TiSe2 ) nanosheets (NSs) that can couple photothermal therapy with photocatalytic therapy. The TiSe2 NSs are prepared using a liquid exfoliation method. They show a layered structure and possess high photothermal conversion efficiency (65.58%) and good biocompatibility. Notably, upon near-infrared irradiation, these NSs exhibit good photocatalytic properties with enhanced reactive oxygen species generation and H2 O2 decomposition in vitro. They can also achieve high temperatures, with heat improving their catalytic ability to further amplify oxidative stress and glutathione depletion in cancer cells. Furthermore, molecular mechanism studies reveal that the synergistic effects of photothermal and enhanced photocatalytic therapy can simultaneously lead to apoptosis and necrosis in cancer cells via the HSP90/JAK3/NF-κB/IKB-α/Caspase-3 pathway. Systemic exploration reveals that the TiSe2 NSs has an appreciable degradation rate and accumulates passively in tumor tissue, where they facilitate photothermal and photocatalytic effects without obvious toxicity. Their study thus indicates the high potential of biodegradable TiSe2 NSs in synergistic phototherapy for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Raios Infravermelhos , Fototerapia , Titânio
12.
Nat Nanotechnol ; 16(10): 1150-1160, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34354264

RESUMO

Although nanomaterials have shown promising biomedical application potential, incomplete understanding of their molecular interactions with biological systems prevents their inclusion into mainstream clinical applications. Here we show that black phosphorus (BP) nanomaterials directly affect the cell cycle's centrosome machinery. BP destabilizes mitotic centrosomes by attenuating the cohesion of pericentriolar material and consequently leads to centrosome fragmentation within mitosis. As a result, BP-treated cells exhibit multipolar spindles and mitotic delay, and ultimately undergo apoptosis. Mechanistically, BP compromises centrosome integrity by deactivating the centrosome kinase polo-like kinase 1 (PLK1). BP directly binds to PLK1, inducing its aggregation, decreasing its cytosolic mobility and eventually restricting its recruitment to centrosomes for activation. With this mechanism, BP nanomaterials show great anticancer potential in tumour xenografted mice. Together, our study reveals a molecular mechanism for the tumoricidal properties of BP and proposes a direction for biomedical application of nanomaterials by exploring their intrinsic bioactivities.


Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/efeitos dos fármacos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Fósforo/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Células HeLa , Xenoenxertos , Humanos , Camundongos , Mitose/efeitos dos fármacos , Neoplasias/genética , Neoplasias/patologia , Fósforo/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinase 1 Polo-Like
13.
Biomaterials ; 273: 120788, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33933912

RESUMO

Intrinsic immune behaviors of nanomaterials and immune systems promote research on their adjuvanticity and the design of next generation nanovaccine-based immunotherapies. Herein, we report a promising multifunctional nanoadjuvant by exploring the immune-potentiating effects of black phosphorus nanosheets (BPs) in vitro and in vivo. The facile coating of BPs with phenylalanine-lysine-phenylalanine (FKF) tripeptide-modified antigen epitopes (FKF-OVAp@BP) enables the generation of a minimalized nanovaccine by integrating high loading capacity, efficient drug delivery, comprehensive dendritic cell (DC) activation, and biocompatibility for cancer immunotherapy. Systemic immunization elicits potent antitumor cellular immunity and significantly augments checkpoint blockade (CPB) against melanoma in a mouse model. Furthermore, near-infrared (NIR) photothermal effects of BPs create an immune-favorable microenvironment for improved local immunization. This study offers new insight into the integration of immunoactivity and photothermal effects for enhanced cancer immunotherapy by using a nanoadjuvant and thus potentially advances the design and application of multifunctional adjuvant materials for cancer nanotreatment.


Assuntos
Imunoterapia , Fósforo , Adjuvantes Imunológicos , Animais , Sistemas de Liberação de Medicamentos , Fatores Imunológicos , Camundongos
14.
J Tradit Chin Med ; 41(2): 276-283, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825408

RESUMO

OBJECTIVE: To compare and observe the effects of three kinds of cephalic acupuncture therapies commonly used in the clinic on promoting nerve function rehabilitation in the brain microenvironment of rats with cerebral palsy. METHODS: A negative control group, positive control group, and three cephalic acupuncture groups based on the administration of three cephalic acupuncture therapies were established. Ten experimental rats were selected from each group at 1, 2, and 3 weeks after modeling. Neuromotor function after treatment was rated according to the Basso, Beattie, and Bresnahan method. White matter fiber bundles were evaluated by head diffusion tensor imaging. The expression levels of neuron-specific enolase, microtubule-associated protein 2, and myelin basic protein in the brain tissue extract were detected by Western blot analysis and the activities of ATPases were determined using a fixed phosphorus method. RESULTS: The pathological changes in brain tissue were restored and motor function scores were increased in the mice in each cephalic acupuncture group, and the expression of neuronal growth-related proteins in the brain tissue extract was significantly increased. Additionally, the activities of ATPases in the lesion area were significant enhanced (P < 0.05). Diffusion tensor imaging revealed that the white matter fiber bundles of mice in each cephalic acupuncture group gradually increased and recovered. The nervous system structure was significantly improved. CONCLUSIONS: All three acupuncture methods promoted the rehabilitation of nerve function damaged by cerebral palsy. These effects are likely related to the improved expression of nerve growth-related proteins, enhancement of ATPase activities, and regulation of the brain microenvironment.


Assuntos
Terapia por Acupuntura , Paralisia Cerebral/terapia , Pontos de Acupuntura , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Paralisia Cerebral/diagnóstico por imagem , Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/reabilitação , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
15.
J Tradit Chin Med ; 40(5): 774-781, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33000578

RESUMO

OBJECTIVE: To investigate the interaction between nuclear factor kappa-B (NF-κB) and inflammatory cytokines in synovial cell inflammatory responses induced by sodium urate, and to evaluate the efficacy of Xixiancao (Herba Siegesbeckiae Orientalis) on these interactions. METHODS: The interactions between NF-κB and inflammatory cytokines/mediators in synovial cells in acute gouty arthritis were investigated. We observed the expressions of NF-κB, interleukin (IL)-1ß, IL-8, and tumor necrosis factor alpha (TNF-α) in synovial cells at different timepoints in an in vitro model of synovial cell inflammatory responses induced by sodium urate and in an in vivo model of gouty arthritis. Changes in the expressions of NF-κB, IL-1ß, IL-8, and TNF- in synovial cells of all experimental groups were compared and observed after treatment with different doses of Xixiancao (Herba Siegesbeckiae Orientalis) and colchicine. The interactions between NF-κB and IL-1ß, IL-8, and TNF-α were analyzed. Pathological changes in synovial tissues were observed in rats with acute gouty arthritis. RESULTS: Compared with the blank group, the expression levels of NF-κB, IL-1ß, IL-8, and TNF-α were increased significantly at different timepoints in the in vitro model of synovial cell inflammatory responses induced by sodium urate, and in the in vivo model of gouty arthritis. Compared with the model group, the expressions of NF-κB, IL-1ß, IL-8, and TNF-α in synovial cells induced by sodium urate were decreased in the different Xixiancao (Herba Siegesbeckiae Orientalis) dose groups and the colchicine group. The effect was more obvious in the high dose Xixiancao (Herba Siegesbeckiae Orientalis) group. The expression of NF-κB in synovial cells was positively correlated with the expressions of IL-1ß, IL-8, and TNF-. Histopathological examination of synovial tissues in the high dose Xixiancao (Herba Siegesbeckiae Orientalis) group and Colchicine group showed that the characteristics of acute gouty arthritis were reduced, and there was a trend towards a positive correlation between NF-κB and inflammatory cytokine expressions. CONCLUSION: The activation of NF-κB is associated with the activation of IL-1ß, IL-8, and TNF-α during the pathogenesis of acute gouty arthritis, leading to the continuation and enhancement of the inflammatory response. Expressions of IL-1ß, IL-8, and TNF-α in synoviocytes during acute gouty arthritis effectively inhibit local inflammation.


Assuntos
Artrite Gotosa/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , NF-kappa B/imunologia , Sinoviócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/imunologia , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/genética , Artrite Gotosa/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , NF-kappa B/genética , Ratos , Ratos Wistar , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Sinoviócitos/imunologia , Fator de Necrose Tumoral alfa/genética , Ácido Úrico/efeitos adversos
16.
Biosens Bioelectron ; 165: 112384, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729509

RESUMO

Circulating tumor DNA (ctDNA) identification is one of the most meaningful approaches towards early cancer diagnosis. However, effective and practical methods for analyzing this emerging class of biomarkers are still lacking. In this work, a biosensor based on nitrophenyl functionalized black phosphorus nanosheets (NP-BPs) is fabricated for sensitive and selective detection of ctDNA. In this work, a nitrophenyl functionalized black phosphorus nanosheets (NP-BPs) biosensor is fabricated for sensitive and selective detection of ctDNA. Due to the successful nitrophenyl functionalization, the NP-BPs biosensor shows higher quenching efficiency and stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). Therefore, the NP-BPs biosensor exhibits 5.4-fold fluorescence enhancement when dye-labelled ssDNA probe forms dsDNA in the presence of its specific ctDNA target. This biosensor exhibits a detection limit of 50 fM and a wide linear detection range of 50 fM-80 pM, provides reliable readout in a short time (15 min). Moreover, the NP-BPs-based biosensor could be applied to discriminate single nucleotide polymorphisms in clinical serum samples. It is envisioned that the NP-BPs-based sensing platform has great potentials in early cancer diagnosis and monitoring cancer progression.


Assuntos
Técnicas Biossensoriais , DNA Tumoral Circulante , DNA/genética , DNA de Cadeia Simples/genética , Limite de Detecção , Fósforo
17.
Angew Chem Int Ed Engl ; 59(46): 20568-20576, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32666703

RESUMO

Chronic obstructive pulmonary disease (COPD) is an intractable disease involving a sticky mucus layer and nanoagents with mucus-penetrating capability offer a new way to deliver drugs. However, drug release from nanovehicles requires optimization to enhance the therapeutic effects of COPD therapy. Herein, black phosphorus quantum dots (BPQDs) are combined with PEGylated chitosan nanospheres containing the antibiotic amikacin (termed PEG@CS/BPQDs-AM NPs). As a drug-delivery system, the hydrophilicity of PEG and positive charge of CS facilitate the penetration of nanovehicles through the mucus layer. The nanovehicles then adhere to the mucous membrane. Furthermore, the BPQDs degrade rapidly into nontoxic PO43- and acidic H+ , thereby promoting the dissociation of PEGylated CS nanospheres, accelerating the release of AM, decreasing the vitality of biofilms for ease of eradication. Our results reveal that drug delivery mediated by BPQDs is a feasible and desirable strategy for precision medicine and promising for the clinical therapy of COPD.


Assuntos
Portadores de Fármacos , Nanopartículas , Fósforo/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pontos Quânticos/química , Animais , Antibacterianos/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Camundongos , Muco/efeitos dos fármacos
18.
Theranostics ; 10(11): 4720-4736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308745

RESUMO

Background and Purpose: Although inorganic nanomaterials have been widely used in multimodal cancer therapies, the intrinsic contributions of the materials are not well understood and sometimes underestimated. In this work, bioactive phospho-therapy with black phosphorus nanosheets (BPs) for in vivo tumor suppression is studied. Methods: Orthotopic liver tumor and acute myeloid leukemia are chosen as the models for the solid tumor and hematological tumor, respectively. BPs are injected into mice through the tail vein and tumor growth is monitored by IVIS bioluminescence imaging. Tumor tissues and serum samples are collected to determine the suppression effect and biosafety of BPs after treatment. Results: The in vitro studies show that BPs with high intracellular uptake produce apoptosis- and autophagy-mediated programmed cell death of human liver carcinoma cells but do not affect normal cells. BPs passively accumulate in the tumor site at a high concentration and inhibit tumor growth. The tumor weight is much less than that observed from the doxorubicin (DOX)-treated group. The average survival time is extended by at least two months and the survival rate is 100% after 120 days. Western bolt analysis confirms that BPs suppress carcinoma growth via the apoptosis and autophagy pathways. In addition, administration of BPs into mice suffering from leukemia results in tumor suppression and long survival. Conclusions: This study reveals that BPs constitute a type of bioactive anti-cancer agents and provides insights into the application of inorganic nanomaterials to cancer therapy.


Assuntos
Doxorrubicina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Nanoestruturas/administração & dosagem , Fósforo/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Neoplasias Hepáticas/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Nanoestruturas/química , Fósforo/farmacocinética , Distribuição Tecidual , Inibidores da Topoisomerase II/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Chem Rev ; 120(4): 2288-2346, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31971371

RESUMO

As a novel member of the two-dimensional nanomaterial family, mono- or few-layer black phosphorus (BP) with direct bandgap and high charge carrier mobility is promising in many applications such as microelectronic devices, photoelectronic devices, energy technologies, and catalysis agents. Due to its benign elemental composition (phosphorus), large surface area, electronic/photonic performances, and chemical/biological activities, BP has also demonstrated a great potential in biomedical applications including biosensing, photothermal/photodynamic therapies, controlled drug releases, and antibacterial uses. The nature of the BP-bio interface is comprised of dynamic contacts between nanomaterials (NMs) and biological systems, where BP and the biological system interact. The physicochemical interactions at the nano-bio interface play a critical role in the biological effects of NMs. In this review, we discuss the interface in the context of BP as a nanomaterial and its unique physicochemical properties that may affect its biological effects. Herein, we comprehensively reviewed the recent studies on the interactions between BP and biomolecules, cells, and animals and summarized various cellular responses, inflammatory/immunological effects, as well as other biological outcomes of BP depending on its own physical properties, exposure routes, and biodistribution. In addition, we also discussed the environmental behaviors and potential risks on environmental organisms of BP. Based on accumulating knowledge on the BP-bio interfaces, this review also summarizes various safer-by-design strategies to change the physicochemical properties including chemical stability and nano-bio interactions, which are critical in tuning the biological behaviors of BP. The better understanding of the biological activity of BP at BP-bio interfaces and corresponding methods to overcome the challenges would promote its future exploration in terms of bringing this new nanomaterial to practical applications.


Assuntos
Engenharia Biomédica/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Fósforo/química , Animais , Humanos , Relação Estrutura-Atividade , Propriedades de Superfície
20.
Small ; 16(1): e1905208, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805221

RESUMO

As new 2D layered nanomaterials, Bi2 O2 Se nanoplates have unique semiconducting properties that can benefit biomedical applications. Herein, a facile top-down approach for the synthesis of Bi2 O2 Se quantum dots (QDs) in a solution is described. The Bi2 O2 Se QDs with a size of 3.8 nm and thickness of 1.9 nm exhibit a high photothermal conversion coefficient of 35.7% and good photothermal stability. In vitro and in vivo assessments demonstrate that the Bi2 O2 Se QDs possess excellent photoacoustic (PA) performance and photothermal therapy (PTT) efficiency. After systemic administration, the Bi2 O2 Se QDs accumulate passively in tumors enabling efficient PA imaging of the entire tumors to facilitate imaging-guided PTT without obvious toxicity. Furthermore, the Bi2 O2 Se QDs which exhibit degradability in aqueous media not only have sufficient stability during in vivo circulation to perform the designed therapeutic functions, but also can be discharged harmlessly from the body afterward. The results reveal the great potential of Bi2 O2 Se QDs as a biodegradable multifunctional agent in medical applications.


Assuntos
Bismuto/uso terapêutico , Neoplasias/terapia , Compostos Organosselênicos/uso terapêutico , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Pontos Quânticos , Bismuto/química , Linhagem Celular Tumoral , Humanos , Compostos Organosselênicos/química , Difração de Pó , Compostos de Selênio , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA