Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiol Ther ; 12(3): 415-443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247171

RESUMO

Cardiac fibrosis is closely associated with multiple heart diseases, which are a prominent health issue in the global world. Neurohormones and cytokines play indispensable roles in cardiac fibrosis. Many signaling pathways participate in cardiac fibrosis as well. Cardiac fibrosis is due to impaired degradation of collagen and impaired fibroblast activation, and collagen accumulation results in increasing heart stiffness and inharmonious activity, leading to structure alterations and finally cardiac function decline. Herbal plants have been applied in traditional medicines for thousands of years. Because of their naturality, they have attracted much attention for use in resisting cardiac fibrosis in recent years. This review sheds light on several extracts from herbal plants, which are promising therapeutics for reversing cardiac fibrosis.

2.
World J Microbiol Biotechnol ; 38(1): 5, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837115

RESUMO

Herbaspirillum camelliae WT00C is a gram-negative endophyte isolated from the tea plant. It has an intact selenate metabolism pathway but poor selenate tolerability. In this study, microbiological properties of the strain WT00C were examined and compared with other three strains CT00C, NCT00C and NT00C, which were obtained respectively from four, six and eight rounds of 24-h exposures to 200 mM selenate. The selenate tolerability and the ability to generate red elemental selenium (Se0) and selenoproteins in H. camelliae WT00C has significantly improved by the forced evolution via 4-6 rounds of multiple exposures a high concentration of selenate. The original strain WT00C grew in 200 mM selenate with the lag phase of 12 h and 400 mM selenate with the lag phase of 60 h, whereas the strains CT00C and NCT00C grew in 800 mM selenate and showed a relatively short lag phase when they grew in 50-400 mM selenate. Besides selenate tolerance, the strains CT00C and NCT00C significantly improved the biosynthesis of red elemental selenium (Se0) and selenoproteins. Two strains exhibited more than 30% selenium conversion efficiency and 40% selenoprotein biosynthesis, compared to the original strain WT00C. These characteristics of the strains CT00C and NCT00C make them applicable in pharmaceuticals and feed industries. The strain NT00C obtained from eight rounds of 24-h exposures to 200 mM selenate was unable to grow in ≥ 400 mM selenate. Its selenium conversion efficiency and selenoprotein biosynthesis were similar to the strain WT00C, indicating that too many exposures may cause gene inactivation of some critical enzymes involving selenate metabolism and antioxidative stress. In addition, bacterial cells underwent obviously physiological and morphological changes, including gene activity, cell enlargement and surface-roughness alterations during the process of multiple exposures to high concentrations of selenate.


Assuntos
Herbaspirillum/crescimento & desenvolvimento , Ácido Selênico/farmacologia , Selênio/metabolismo , Selenoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Camellia sinensis/microbiologia , Relação Dose-Resposta a Droga , Fermentação , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Herbaspirillum/classificação , Herbaspirillum/isolamento & purificação , Herbaspirillum/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-25093030

RESUMO

The present study aimed to evaluate the therapeutic effects of polysaccharides from Inonotus obliquus (PIO) on streptozotocin- (STZ-) induced diabetic symptoms and their potential mechanisms. The effect of PIO on body weight, blood glucose, damaged pancreatic ß-cells, oxidative stresses, proinflammatory cytokines, and glucose metabolizing enzymes in liver was studied. The results show that administration of PIO can restore abnormal oxidative indices near normal levels. The STZ-damaged pancreatic ß-cells of the rats were partly recovered gradually after the mice were administered with PIO 6 weeks later. Therefore, we may assume that PIO is effective in the protection of STZ-induced diabetic rats and PIO may be of use as antihyperglycemic agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA