Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 23(13): 12976-82, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26996909

RESUMO

Batch experiments were conducted to investigate cadmium(II) (Cd(II)) adsorption by two variable-charge soils (an Oxisol and an Ultisol) as influenced by the presence of pectin. When pectin dosage was less than 30 g kg(-1), the increase in Cd(II) adsorption with the increasing dose of pectin was greater than that when the pectin dosage was >30 g kg(-1). Although both Langmuir and Freundlich equations fitted the adsorption isotherms of Cd(II) and electrostatic adsorption data of Cd(II) by the two soils well, the Langmuir equation showed a better fit. The increase in the maximum total adsorption of Cd(II) induced by pectin was almost equal in both the soils, whereas the increase in the maximum electrostatic adsorption of Cd(II) was greater in the Oxisol than in the Ultisol because the former contained greater amounts of free Fe/Al oxides than the latter, which, in turn, led to a greater increase in the negative charge on the Oxisol. Therefore, the presence of pectin induced the increase in Cd(II) adsorption by the variable-charge soils mainly through the electrostatic mechanism. Pectin increased the adsorption of Cd(II) by the variable-charge soils and thus decreased the activity and mobility of Cd(II) in these soils.


Assuntos
Cádmio/análise , Pectinas/química , Poluentes do Solo/análise , Solo/química , Adsorção , Cádmio/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Eletricidade Estática
2.
Environ Sci Pollut Res Int ; 22(24): 19687-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278899

RESUMO

The influence of pectin on Cu(II) adsorption by two variable-charge soils (an Oxisol and an Ultisol) was investigated. Pectin increased the adsorption, and the extent of adsorption increased linearly with the dose of pectin, being greater in the Oxisol than that in the Ultisol because the adsorption of pectin by the Oxisol was greater. Both Langmuir and Freundlich equations fitted the adsorption isotherms of Cu(II) for both soils well. The fitting parameters of both equations indicated that pectin increased not only the adsorption capacity of the soils for Cu(II) but also the adsorption strength of Cu(II). The effect of pectin decreased with rising pH in the pH range 3.5-6.0, although the extent of electrostatic adsorption of Cu(II) by both soils was markedly greater over the pH range. Fourier-transformed infrared spectroscopy analysis and zeta potential measurement of soil colloids indicated that adsorption of pectin by the soils made the negative charge on both soils more negative, which was responsible for the increase in the electrostatic adsorption of Cu(II) induced by the addition of pectin. In conclusion, pectin-enhanced adsorption of Cu(II) especially at low pH would be beneficial to the soils as it would decrease the activity and mobility of Cu(II) in acidic variable-charge soils.


Assuntos
Cobre/metabolismo , Pectinas/farmacologia , Poluentes do Solo/metabolismo , Solo/química , Adsorção , Biotransformação , China , Coloides , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA