Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0135523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334388

RESUMO

In subtropical forest ecosystems with few phosphorus (P) inputs, P availability and forest productivity depend on soil organic P (Po) mineralization. However, the mechanisms by which the microbial community determines the status and fate of soil Po mineralization remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest (SNF), mixed planting, and monoculture forest of Chinese fir. The P fractions, Po-mineralization ability, and microbial community in the soils of different forest types were characterized. In addition, we defined Po-mineralizing taxa with the potential to interact with the soil microbial community to regulate Po mineralization. We found that a higher labile P content persisted in SNF and was positively associated with the Po-mineralization capacity of the soil microbial community. In vitro cultures of soil suspensions revealed that soil Po mineralization of three forest types was distinguished by differences in the composition of fungal communities. We further identified broad phylogenetic lineages of Po-mineralizing fungi with a high intensity of positive interactions with the soil microbial community, implying that the facilitation of Po-mineralizing taxa is crucial for soil P availability. Our dilution experiments to weaken microbial interactions revealed that in SNF soil, which had the highest interaction intensity of Po-mineralizing taxa with the community, Po-mineralization capacity was irreversibly lost after dilution, highlighting the importance of microbial diversity protection in forest soils. In summary, this study demonstrates that the interactions of Po-mineralizing microorganisms with the soil microbial community are critical for P availability in subtropical forests.IMPORTANCEIn subtropical forest ecosystems with few phosphorus inputs, phosphorus availability and forest productivity depend on soil organic phosphorus mineralization. However, the mechanisms by which the microbial community interactions determine the mineralization of soil organic phosphorus remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest, mixed planting, and monoculture forest of Chinese fir. We found that a higher soil labile phosphorus content was positively associated with the organic phosphorus mineralization capacity of the soil microbial community. Soil organic phosphorus mineralization of three forest types was distinguished by the differences in the composition of fungal communities. The positive interactions between organic phosphorus-mineralizing fungi and the rest of the soil microbial community facilitated organic phosphorus mineralization. This study highlights the importance of microbial diversity protection in forest soils and reveals the microbial mechanism of phosphorus availability maintenance in subtropical forest ecosystems.


Assuntos
Microbiota , Solo , Fósforo , Filogenia , Florestas , Interações Microbianas , Microbiologia do Solo , Fungos , Nitrogênio , Carbono
2.
Environ Sci Pollut Res Int ; 23(13): 12976-82, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26996909

RESUMO

Batch experiments were conducted to investigate cadmium(II) (Cd(II)) adsorption by two variable-charge soils (an Oxisol and an Ultisol) as influenced by the presence of pectin. When pectin dosage was less than 30 g kg(-1), the increase in Cd(II) adsorption with the increasing dose of pectin was greater than that when the pectin dosage was >30 g kg(-1). Although both Langmuir and Freundlich equations fitted the adsorption isotherms of Cd(II) and electrostatic adsorption data of Cd(II) by the two soils well, the Langmuir equation showed a better fit. The increase in the maximum total adsorption of Cd(II) induced by pectin was almost equal in both the soils, whereas the increase in the maximum electrostatic adsorption of Cd(II) was greater in the Oxisol than in the Ultisol because the former contained greater amounts of free Fe/Al oxides than the latter, which, in turn, led to a greater increase in the negative charge on the Oxisol. Therefore, the presence of pectin induced the increase in Cd(II) adsorption by the variable-charge soils mainly through the electrostatic mechanism. Pectin increased the adsorption of Cd(II) by the variable-charge soils and thus decreased the activity and mobility of Cd(II) in these soils.


Assuntos
Cádmio/análise , Pectinas/química , Poluentes do Solo/análise , Solo/química , Adsorção , Cádmio/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/química , Eletricidade Estática
3.
Environ Sci Pollut Res Int ; 22(24): 19687-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26278899

RESUMO

The influence of pectin on Cu(II) adsorption by two variable-charge soils (an Oxisol and an Ultisol) was investigated. Pectin increased the adsorption, and the extent of adsorption increased linearly with the dose of pectin, being greater in the Oxisol than that in the Ultisol because the adsorption of pectin by the Oxisol was greater. Both Langmuir and Freundlich equations fitted the adsorption isotherms of Cu(II) for both soils well. The fitting parameters of both equations indicated that pectin increased not only the adsorption capacity of the soils for Cu(II) but also the adsorption strength of Cu(II). The effect of pectin decreased with rising pH in the pH range 3.5-6.0, although the extent of electrostatic adsorption of Cu(II) by both soils was markedly greater over the pH range. Fourier-transformed infrared spectroscopy analysis and zeta potential measurement of soil colloids indicated that adsorption of pectin by the soils made the negative charge on both soils more negative, which was responsible for the increase in the electrostatic adsorption of Cu(II) induced by the addition of pectin. In conclusion, pectin-enhanced adsorption of Cu(II) especially at low pH would be beneficial to the soils as it would decrease the activity and mobility of Cu(II) in acidic variable-charge soils.


Assuntos
Cobre/metabolismo , Pectinas/farmacologia , Poluentes do Solo/metabolismo , Solo/química , Adsorção , Biotransformação , China , Coloides , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA