Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Pept Lett ; 28(2): 229-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32640951

RESUMO

BACKGROUND: Flavin adenine dinucleotide (FAD) is a redox-active coenzyme that regulates several important enzymatic reactions during metabolism. FAD is used in the medicinal and food industries and FAD supplements have been used to treat some inheritable diseases. FAD can be biosynthesized from flavin mononucleotide (FMN) and adenosine triphosphate (ATP), catalyzed by FAD synthetase (FADS). OBJECTIVE: The aim of this study was to heterologously express the gene encoding FADS from the flavinogenic yeast Candida famata (FADSCf) for biosynthesis of FAD. METHODS: The sequence encoding FADSCf was retrieved and heterologously expressed in Escherichia coli. The structure and enzymatic properties of recombinant FADSCf were characterized. RESULTS: FADSCf (279 amino acids) was successfully expressed in E. coli BL21 (DE3), with a theoretical molecular weight of 32299.79 Da and an isoelectric point of 6.09. Secondary structural analysis showed that the number of α-helices was 2-fold higher than the number of ß-sheets, indicating that the protein was highly hydrophilic. Under fixed ATP concentration, FADSCf had a Km of 0.04737±0.03158 mM and a Vmax of 3.271±0.79 µM/min/mg. Under fixed FMN concentration, FADSCf had a Km of 0.1214±0.07464 mM and a Vmax of 2.6695±0.3715 µM/min/mg. Enzymatic reactions in vitro showed that expressed FADSCf could form 80 mM of FAD per mg of enzyme after 21 hours under the following conditions: 0.5 mM FMN, 5 mM ATP and 10 mM Mg2+. CONCLUSION: Under optimized conditions (0.5 mM FMN, 5 mM ATP and 10 mM Mg2+), the production of FAD reached 80 mM per mg of FADSCf after a 21-hour reaction. Our results indicate that purified recombinant FADSCf can be used for the biosynthesis of FAD.


Assuntos
Candida/enzimologia , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência
2.
Artigo em Chinês | MEDLINE | ID: mdl-12545218

RESUMO

S-Adenosyl-L-methionine(SAM) is an important metabolic intermediate in the metabolic flux of sulphur. SAM is involved in three key metabolic pathways: transmethylation, transsulfuration and polyamine synthesis. As a potential therapeutic agent, SAM is being used as over the counter drug and nutrient supplement. An expression vector, harboring SAM synthetase 2 gene from S. cerevisiae and regulated by the glyceraldehyde-3-phosphate dehydrogenase gene promoter P(GAP), was transformed into GS115 strain of P. pastoris. Through zeocin resistance and expression screening, a recombinant strain was obtained that had high SAM yield and the fermentation conditions were optimized. The results showed that carbon source, nitrogen source, pH and dissolved oxygen had significant effects on the accumulation of SAM. The SAM production of the recombinant cells reached 2.49 g/L after fermentation for three days under the optimized conditions. The present studies show that fermentation of recombinant P. pastoris strain, expressing heterologous SAM synthetase gene, may be a promising approach for the production of SAM.


Assuntos
Metionina Adenosiltransferase/metabolismo , Pichia/genética , S-Adenosilmetionina/biossíntese , Bleomicina/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Resistência a Medicamentos/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Concentração de Íons de Hidrogênio , Metionina/farmacologia , Metionina Adenosiltransferase/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA