Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 539, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087022

RESUMO

Metallic and semimetallic mesoporous frameworks are of great importance owing to their unique properties and broad applications. However, semimetallic mesoporous structures cannot be obtained by the traditional template-mediated strategies due to the inevitable hydrolytic reaction of semimetal compounds. Therefore, it is yet challenging to fabricate mesoporous semimetal nanostructures, not even mention controlling their pore sizes. Here we develop a facile and robust selective etching route to synthesize monodispersed mesoporous antimony nanospheres (MSbNSs). The pore sizes of MSbNSs are tunable by carefully controlling the partial oxidation of Sb nuclei and the selective etching of the as-formed Sb2O3. MSbNSs show a wide absorption from visible to second near-infrared (NIR-II) region. Moreover, PEGylated MSbNSs are degradable and the degradation mechanism is further explained. The NIR-II photothermal performance of MSbNSs is promising with a high photothermal conversion efficiency of ~44% and intensive NIR-II photoacoustic signal. MSbNSs show potential as multifunctional nanomedicines for NIR-II photoacoustic imaging guided synergistic photothermal/chemo therapy in vivo. Our selective etching process would contribute to the development of various semimetallic mesoporous structures and efficient multimodal nanoplatforms for theranostics.


Assuntos
Antimônio/química , Antimônio/farmacologia , Nanosferas/química , Nanosferas/uso terapêutico , Medicina de Precisão/métodos , Animais , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanoestruturas/química , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia , Nanomedicina Teranóstica/métodos
2.
Adv Mater ; 33(18): e2100039, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783044

RESUMO

Antimony (Sb), a typical group VA semimetal, has rarely been studied both experimentally and theoretically in plasmonic photothermal therapy, possibly due to the lack of effective morphology-controllable methods for the preparation of high-quality Sb nanocrystals. In this study, an effective ligand-guided growth strategy to controllably synthesize Sb nanopolyhedrons (Sb NPHs) with ultrahigh photothermal conversion efficiency (PTCE), good photothermal stability, as well as biocompatibility is presented. Furthermore, the modulation effect of different morphologies on localized surface plasmon resonance (LSPR) of Sb NPHs in experimentation is successfully observed. When the resonance frequency of the Sb NPHs is matched well with the excitation wavelength (808 nm), the PTCE of the Sb NPHs is as high as 62.1%, which is noticeably higher compared to most of the reported photothermal agents. The Sb NPHs also exhibit good photothermal stability. In addition, Sb-NPHs-based multifunctional nanomedicines are further constructed via loading 1-methyl-d-tryptophan on PEGylated Sb NPHs for a highly efficient photoacoustic-imaging-guided synergistic photothermal/immune-therapy of tumors in vivo. This work can stimulate further theoretical and experimental investigations of Sb NPHs and other semimetal nanomaterials regarding their LSPR properties and inspire various potential applications of semimetals in biomedicine and sensors.


Assuntos
Antimônio , Diagnóstico por Imagem , Imunoterapia , Fototerapia , Ressonância de Plasmônio de Superfície , Nanomedicina Teranóstica , Células HeLa , Humanos , Técnicas Fotoacústicas
3.
Biomaterials ; 269: 120459, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139071

RESUMO

The emergence of near-infrared-II (NIR-II) activated photomedicines has extended the penetration depth for noninvasive theranostics, especially for photothermal nanomedicines. The current early development stage for NIR-II activated photomedicines has focused on creating a greater variety of photothermal agents (PTAs) with superior photothermal conversion ability. However, there is no thorough review for NIR-II inorganic PTAs and most comparisons of the photothermal performances of NIR-II inorganic PTAs are made with NIR-I PTAs. This review will first discuss about the key mechanisms of NIR-II absorption and photothermal conversion. Subsequently, this review will summarize recently developed advanced NIR-II inorganic PTAs based on the dominant inorganic elements and provide a comparison of their NIR-II photothermal performances. The nanostructure design, enhancement strategies and potential biomedical applications will be listed and discussed. We hope this review will further inspire active development and study of NIR-II activated inorganic PTAs with good photothermal conversion ability, multifunctionality, biocompatibility or biodegradability, and disease targeting ability.


Assuntos
Nanomedicina , Nanoestruturas , Fototerapia
4.
Small ; 16(1): e1905265, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782909

RESUMO

Neodymium (Nd3+ )-sensitized nanoconstructs have gained increasing attention in recent decades due to their unique properties, especially optical properties. The design of various Nd3+ -sensitized nanosystems is expected to contribute to medical and health applications, due to their advantageous properties such as high penetration depth, excellent photostability, non-photobleaching, low cytotoxicity, etc. However, the low conversion efficiency and potential long-term toxicity of Nd3+ -sensitized nanoconstructs are huge obstacles to their clinical translations. This review article summarizes three energy transfer pathways of all kinds of Nd3+ -sensitized nanoconstructs focusing on the properties of Nd3+ ions and discusses their recent potential applications as near-infrared (NIR) enabled photomedicine. This review article will contribute to the design and fabrication of novel Nd3+ -sensitized nanoconstructs for NIR-enabled photomedicine, aiming for potentially safer and more efficient designs to get closer to clinical usage.


Assuntos
Raios Infravermelhos , Nanopartículas/química , Neodímio/química , Fototerapia
5.
ACS Appl Mater Interfaces ; 10(27): 22985-22996, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29877702

RESUMO

Photodynamic therapy (PDT) holds great promise as a noninvasive and selective cancer therapeutic treatment in preclinical research and clinical practice; however, it has limited efficacy in the ablation of deep-seated tumor because of hypoxia-associated circumstance and poor penetration of photosensitizers to cancer cells away from the blood vessels. To tackle the obstacles, we propose a therapeutic strategy that synergizes upconversion nanophotosensitizers (UNPSs) with hyperbaric oxygen (HBO) to remodel the extracellular matrix for enhanced photodynamic cancer therapy. The UNPSs are designed to have an Nd3+-sensitized sandwiched structure, wherein the upconversion core serves as light transducers to transfer energy to the neighboring photosensitizers to produce reactive oxygen species (ROS). With HBO, photodynamic process can generate abundant ROS in the intrinsically hypoxic tumor. It is revealed for the first time that HBO-assisted PDT decomposes collagen in the extracellular matrix of tumor and thus facilitates the diffusion of oxygen and penetration of UNPSs into the deeper area of tumor. Such a synergic effect eventually results in a significantly enhanced therapeutic efficacy at a low laser power density as compared with that using UNPSs alone. In view of its good biosafety, the HBO-assisted and UNPSs-mediated PDT provides new possibilities for treatment of solid tumors.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Oxigenoterapia Hiperbárica , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA