Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(51): 110901-110912, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37796353

RESUMO

Excessive phosphorus in water would cause eutrophication and deterioration of the ecological environment. Herein, the La-MOFs/Al2O3 composite was successfully prepared by the in situ hydrothermal synthesis method for granulation, which was conducive to exerting the phosphate adsorption capacity and facilitating practical application. The materials were characterized by SEM, EDX, XRD, BET, FTIR, and Zeta. In addition, the adsorption performance of La-MOFs/Al2O3 was evaluated through adsorption kinetics and isotherms, showing that the Langmuir adsorption capacity was 16.34 mgP·g-1 (25 °C) and increased with the water temperature. Moreover, the batch influence experiments of intimal pH, adsorbent dosage, coexisting ions, and stability tests were performed to analyze the potential for practical applications and verified through the natural micro-polluted water samples from Houxi River and Bailu Lake (China). The results indicated that the La-MOFs/Al2O3 was suited to a wide pH range of 4 to 10 and the phosphate removal efficiency remained above 70% after continuous use for four times, exhibiting excellent stability. It also had excellent selectivity in the presence of SO42-, Cl-, NO3-, and HCO3-, only decreased to 70.24% at high HCO3- ion concentration of 60 mg/L, respectively. And the La-MOFs/Al2O3 had excellent adsorption of total phosphorus, phosphate, and organic phosphorus in the actual river and lake water and completely removed dissolved phosphorus. Finally, a phosphate adsorption mechanism model involved in electrostatic interaction and ligand exchange was proposed. Therefore, La-MOFs/Al2O3 could be considered to be an excellent phosphorus adsorbent for application in the actual water environmental remediation.


Assuntos
Fosfatos , Poluentes Químicos da Água , Água/química , Lantânio/química , Fósforo , Íons , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Chemosphere ; 339: 139687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541439

RESUMO

Arsenic (As) is a highly toxic heavy metal and has been widely concerned for its hazardous environmental impact. Aromatic organic arsenic (AOCs) has been frequently used as an animal supplement to enhance feed utilization and prevent dysentery. The majority of organic arsenic could be discharged from the body and evolve as highly toxic inorganic arsenic that is hazardous to the environment and human health via biological conversion, photodegradation, and photo-oxidation. Current environmental issues necessitate the development and application of multifunctional porous materials in environmental remediation. Compared to the conventional adsorbent, such as activated carbon and zeolite, metal-organic frameworks (MOFs) exhibit a number of advantages, including simple synthesis, wide variety, simple modulation of pore size, large specific surface area, excellent chemical stability, and easy modification. In recent years, numerous scientists have investigated MOFs related materials involved with organic arsenic. These studies can be divided into three categories: detection of organic arsenic by MOFs, adsorption to remove organic arsenic by MOFs, and catalytic removal of organic arsenic by MOFs. Here, we conduct a critical analysis of current research findings and knowledge pertaining to the structural characteristics, application methods, removal properties, interaction mechanisms, and spectral analysis of MOFs. We summarized the application of MOFs in organic arsenic detection, adsorption, and catalytic degradation. Other arsenic removal technologies and conventional substances are also being investigated. This review will provide relevant scientific researchers with references.


Assuntos
Intoxicação por Arsênico , Arsênio , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Intoxicação por Metais Pesados , Adsorção
3.
Sci Total Environ ; 744: 140833, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32717469

RESUMO

Disinfection is an indispensable process to inactivate pathogens, while unexpected disinfection by-products (DBPs) would also be formed between the reaction of residual disinfectants and microorganisms in the water distribution system (WDS). However, there are few studies referring to the formation of DBPs and DBPs-associated toxicity under various disinfection methods based on microorganisms in the real WDS. In addition, the main contributors of bacterial communities or components that generate DBPs are unclear. In this study, the formation of trihalomethanes (THMs), halo-acetic acids (HAAs), nitrosamines (NAs) from culturable microorganisms in pipeline network by ozonation(O3), chlorination (Cl2), chloramination (NH2Cl) and joint disinfection methods were compared, meanwhile, their calculated toxicities under different oxidation scenarios were also discussed. Moreover, 16S ribosomal ribonucleic acid (rRNA) gene sequencing was used to identify the main microbial communities. The results demonstrated that THMs and HAAs increased with increasing disinfectant dosages, while the quantity of NAs (mainly nitroso dimethylamine (NDMA)) was not significantly related to disinfectant dosages for each disinfection strategy. Chloroform (TCM) and dichloroacetic acid (DCAA) were the dominant THMs and HAAs species, respectively. NDMA existed in the samples before disinfections, which may due to the metabolic activity of microorganisms. Pre-O3 increased THMs formation during subsequent Cl2 and NH2Cl treatment. However, pre-O3 effectively reduced HAAs produced by subsequent chlorination. O3/Cl2 disinfection had the highest DBPs formation potential (DBPFP) (883.6 nM), while its calculated toxicity was similar to that in Cl2 disinfection treatment. Pseudomonas was the most abundant bacterial genus in biofilm of WDS pipeline. This study can aid in an optimal disinfection strategy for water treatment plants to reduce the toxicity of DBPs caused by biomass in pipelines and ensure water quality safety.


Assuntos
Desinfetantes , Ozônio , Poluentes Químicos da Água/análise , Purificação da Água , Acetatos , Cloro , Desinfecção , Halogenação , Extratos Vegetais , Trialometanos/análise
4.
Environ Sci Pollut Res Int ; 26(2): 1584-1594, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30443725

RESUMO

N-nitrosodimethylamine (NDMA), a toxic disinfection byproduct commonly associated with chloramination, has recently been found to form from an anti-yellowing agent (4,4'-hexamethylenebis (1,1-dimethylsemicarbazide) (HDMS)) during ozonation but the mechanisms are unclear. In this paper, the potential roles of molecular ozone (O3) and hydroxyl radical (∙OH) on NDMA formation from HDMS were investigated under various oxidation conditions (ozone dosages, pH) and different components in water (bromide ion (Br-), bicarbonate ion (HCO3-), sulfate ion (SO42-), and humic acid (HA), as well as natural organic matter (NOM) from a lake). Moreover, HDMS transformation pathways by ozonation were determined. The results indicated that the formation of NDMA was enhanced through the combined effect of O3 and ∙OH compared to that by O3 alone (addition of tert-butyl alcohol (tBA) as ∙OH scavenger). ∙OH itself cannot generate NDMA directly; however, it can transform HDMS to intermediates with higher NDMA yield than parent compound. The NDMA generation was affected (small dosages promoted but high dosages inhibited) by HA or Br- no matter with or without tBA. The presence of SO42- and HCO3- ions lowered NDMA formation through ∙OH scavenging effect. Increasing pH not only increased degradation rate constant by enhancing ∙OH generation but also affected HDMS dissociation ratio, reaching the maximum NDMA formation at pH 7-8. Natural constituents in selected water matrix inhibited NDMA formation. Impacts of these influencing factors on NDMA formation by only O3 however were significantly less pronounced over that by the joint roles of O3 and ∙OH. Based on the result of Q-TOF, LC/MS/MS, and GC/MS, the possible transformation pathways of HDMS by ozonation were proposed. The NDMA enhancement mechanism by the combined effect of O3 and ∙OH can be attributed to greater amounts of intermediates with higher NDMA yield (such as unsymmetrical dimethylhydrazine (UDMH)) produced. These findings provide new understanding of NDMA formation upon ozonation of typical amine-based compounds.


Assuntos
Dimetilnitrosamina/química , Água Potável/química , Ozônio/química , Semicarbazidas/química , Bicarbonatos/química , Brometos/química , Cromatografia Gasosa-Espectrometria de Massas , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Sulfatos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/química , Purificação da Água , terc-Butil Álcool/química
5.
Environ Sci Pollut Res Int ; 25(19): 18510-18518, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29700745

RESUMO

This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.


Assuntos
Fósforo/análise , Esgotos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Amônia/análise , Carbono/análise , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA