Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20721, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456868

RESUMO

Monitoring the moisture content of withering leaves in black tea manufacturing remains a difficult task because the external and internal information of withering leaves cannot be simultaneously obtained. In this study, the spectral data and the color/texture information of withering leaves were obtained using near infrared spectroscopy (NIRS) and electronic eye (E-eye), respectively, and then fused to predict the moisture content. Subsequently, the low- and middle-level fusion strategy combined with support vector regression (SVR) was applied to detect the moisture level of withering leaves. In the middle-level fusion strategy, the principal component analysis (PCA) and random frog (RF) were employed to compress the variables and select effective information, respectively. The middle-level-RF (cutoff line = 0.8) displayed the best performance because this model used fewer variables and still achieved a satisfactory result, with 0.9883 and 5.5596 for the correlation coefficient of the prediction set (Rp) and relative percent deviation (RPD), respectively. Hence, our study demonstrated that the proposed data fusion strategy could accurately predict the moisture content during the withering process.


Assuntos
Camellia sinensis , Chá , Animais , Espectroscopia de Luz Próxima ao Infravermelho , Folhas de Planta , Eletrônica , Anuros
2.
BMC Microbiol ; 22(1): 55, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164712

RESUMO

BACKGROUND: The rhizosphere is the narrow zone of soil immediately surrounding the root, and it is a critical hotspot of microbial activity, strongly influencing the physiology and development of plants. For analyzing the relationship between the microbiome and metabolome in the rhizosphere of tea (Camellia sinensis) plants, the bacterial composition and its correlation to soil metabolites were investigated under three different fertilization treatments (unfertilized, urea, cow manure) in different growing seasons (spring, early and late summer). RESULTS: The bacterial phyla Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria dominated the rhizosphere of tea plants regardless of the sampling time. These indicated that the compositional shift was associated with different fertilizer/manure treatments as well as the sampling time. However, the relative abundance of these enriched bacteria varied under the three different fertilizer regimes. Most of the enriched metabolic pathways stimulated by different fertilizer application were all related to sugars, amino acids fatty acids and alkaloids metabolism. Organic acids and fatty acids were potential metabolites mediating the plant-bacteria interaction in the rhizosphere. Bacteria in the genera Proteiniphilum, Fermentimonas and Pseudomonas in spring, Saccharimonadales and Gaiellales in early summer, Acidobacteriales and Gaiellales in late summer regulated relative contents of organic and fatty acids. CONCLUSION: This study documents the profound changes to the rhizosphere microbiome and bacterially derived metabolites under different fertilizer regimes and provides a conceptual framework towards improving the performance of tea plantations.


Assuntos
Camellia sinensis/microbiologia , Esterco/análise , Microbiota/genética , Rizosfera , Microbiologia do Solo , Agricultura , Animais , Bactérias/classificação , Bactérias/genética , Bovinos , Metaboloma , Microbiota/fisiologia , Solo/química
3.
J Environ Manage ; 301: 113898, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626943

RESUMO

In shallow eutrophic lakes, submersed macrophytes are essential for maintaining a clear water state, and they are affected markedly by fishes directly through herbivory and indirectly by fish-invertebrate-periphyton complexity, a pathway that presently is not well understood in subtropical lakes but probably vital to lake managements. We conducted a mesocosm study involving benthic fish (Misgurnus anguillicaudatus), snails (Radix swinhoei) and submersed macrophyte (Vallisneria natans), aiming to examine whether benthic fish is detrimental to reestablishment of clear-water macrophyte-dominated state in eutrophic degraded lakes. In addition, we aimed to investigate the cascading effect that benthic fish might have on periphyton and phytoplankton and to what extent snails can alleviate this effect. Our results showed that benthic fish promoted nutrient release from the sediment and thereby facilitated the growth of phytoplankton and periphyton, leading to reduced growth of submerged macrophytes due to shading. Snails consumed the periphyton attached on the leaves of macrophytes, thereby being beneficial to the plant growth, albeit it could not fully counteract the adverse effects from benthic fish. The water quality indicators in terms of nutrients concentrations, phytoplankton biomass and light extinction coefficient along the water column was affected primarily by benthic fish, followed by macrophytes and snails. To target a clear-water condition, the water quality was best at the presence of macrophytes alone or in combination with snails, and worst at the presence of benthic fish. Our results implied that the removal of benthic fish should be a useful ecological restoration method for rehabilitation of submersed macrophytes and water quality improvement in subtropic, eutrophic, shallow lakes following external nutrient loading reduction.


Assuntos
Hydrocharitaceae , Lagos , Animais , Biomassa , Peixes , Fósforo , Fitoplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA