Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 298(6): 1559-1578, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922102

RESUMO

Tea plant (Camellia sinensis L.), whose leaves are the major reproductive organs, has been cultivated and consumed widely for its economic and health benefits. The Knotted1-like Homeobox (KNOX) proteins play significant roles in leaf morphology formation and development. However, the functions of KNOX proteins in tea plants are still unknown. Here, 11 CsKNOX genes from the tea plants were cloned and divided into Class I, II, and KNATM clades based on their protein sequences. These 11 CsKNOX genes were mapped on 8 out of 15 tea plant chromosomes, all localized in the nucleus. Specific spatiotemporal expression patterns of CsKNOX genes were found in various tissues and different development periods of buds, flowers, and roots of tea plants. Meanwhile, transcript levels of CsKNOX in tea leaves were strongly correlated with the accumulation of flavan-3-ols and proanthocyanidins. It was found that most of the CsKNOX genes could respond to drought, salt, cold, and exogenous MeJA and GA3 by analysis of transcriptomics data and promoter elements. The protein interaction analysis showed that CsKNOX could cooperate with CsAS1 and other critical functional proteins. In conclusion, this research provided the basic information for the functions of the CsKNOX family during organogenesis and stress response in tea plants, which was necessary for further functional characterization verification.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Sequência de Aminoácidos , Chá
2.
Int J Biol Macromol ; 253(Pt 1): 126582, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652332

RESUMO

Adverse environments, especially drought conditions, deeply influence plant development and growth in all aspects, and the yield and quality of tea plants are largely dependent on favorable growth conditions. Although tea plant responses to drought stress (DS) have been studied, a comprehensive multilayer epigenetic, transcriptomic, and proteomic investigation of how tea responds to DS is lacking. In this study, we generated DNA methylome, transcriptome, proteome, and phosphoproteome data to explore multiple regulatory landscapes in the tea plant response to DS. An integrated multiomics analysis revealed the response of tea plants to DS at multiple regulatory levels. Furthermore, a set of DS-responsive genes involved in photosynthesis, transmembrane transportation, phytohormone metabolism and signaling, secondary metabolite pathways, transcription factors, protein kinases, posttranslational and epigenetic modification, and other key stress-responsive genes were identified for further functional investigation. These results reveal the multilayer regulatory landscape of the tea plant response to DS and provide insight into the mechanisms of these DS responses.


Assuntos
Camellia sinensis , Secas , Proteômica , Regulação da Expressão Gênica de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol Biochem ; 155: 898-913, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32916640

RESUMO

The histone deacetylases (HDACs) are involved in growth, development and stress responses in many plants. However, the functions of HDACs in tea plant (Camellia sinensis L. O. Kuntze) and other woody plants remain unclear. Here, 18 CsHDAC genes were identified by genome-wide analysis in tea plant. The phylogenetic analysis demonstrated that the CsHDAC proteins were divided into three subfamilies, namely, the RPD3/HDA1 subfamily (8 members), the SIR2 subfamily (4 members) and the plant specific HD2 subfamily (6 members). The expression patterns showed that most members of CsHDACs family were regulated by different abiotic stress. High correlation was found between the expression of the CsHDACs and the accumulation of theanine, catechin, EGCG and other metabolites in tea plant. Most of the CsHDAC proteins were negative regulators. We further studied a specific gene CsHD2C (NCBI-ID: KY364373) in tea plant, which is the homolog of AtHD2C, encoded a protein of 306 aa. CsHD2C was highly expressed in leaves, young buds and stems. The transcription of CsHD2C was inhibited by ABA, NaCl and low temperature. It was found localized in the nucleus when fused with a YFP reporter gene. Overexpression of CsHD2C can rescue the phenotype related to different abiotic stresses in the mutant of AtHD2C in Arabidopsis. The stress-responsive genes RD29A, RD29B, ABI1 and ABI2 were also investigated to understand the regulating role of CsHD2C under abiotic stresses. We also found that CsHD2C could renew the change of acetylation level for histone H4 and the RNAP-II occupancy accumulation in the promoter of abiotic stress responses gene in the hd2c Arabidopsis mutant. Together, our results suggested that CsHD2C may act as a positive regulator in abiotic stress responses in tea plant.


Assuntos
Camellia sinensis/genética , Histona Desacetilases/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Estresse Fisiológico
4.
Plant Cell Rep ; 31(1): 67-79, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21892614

RESUMO

Rice (Oryza sativa L. 'Nipponbare') cDNA subtractive suppression hybridization (SSH) libraries constructed using cadmium (Cd)-treated seedling roots were screened to isolate Cd-responsive genes. A cDNA clone, encoding the rice homolog of Metal Tolerance Protein (OsMTP1), was induced by Cd treatment. Plant MTPs belong to cation diffusion facilitator (CDF) protein family, which are widespread in bacteria, fungi, plants, and animals. OsMTP1 heterologous expression in yeast mutants showed that OsMTP1 was able to complement the mutant strains' hypersensitivity to Ni, Cd, and Zn, but not other metals including Co and Mn. OsMTP1 expression increased tolerance to Zn, Cd, and Ni in wild-type yeast BY4741 during the exponential growth phase. OsMTP1 fused to green fluorescent protein was localized in onion epidermal cell plasma membranes, consistent with an OsMTP1 function in heavy metal transporting. OsMTP1 dsRNAi mediated by transgenic assay in rice seedlings resulted in heavy metal sensitivity and changed the heavy metal accumulation in different organs of mature rice under low-concentration heavy metal stress. Taken together, our results show that OsMTP1 is a bivalent cation transporter localized in the cell membrane, which is necessary for efficient translocation of Zn, Cd and other heavy metals, and maintain ion homeostasis in plant.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transporte Biológico , Cádmio/metabolismo , Cádmio/farmacologia , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Cobalto/farmacologia , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Manganês/farmacologia , Metais/metabolismo , Metais Pesados/metabolismo , Metais Pesados/farmacologia , Mutação , Níquel/metabolismo , Níquel/farmacologia , Cebolas/metabolismo , Oryza/efeitos dos fármacos , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA