Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33628325

RESUMO

Metabolic syndrome (MetS) is a pathological state of metabolic disorders that primarily occur in human proteins, fats, and carbohydrates. It is a complex cluster of core metabolic disorder syndromes including obesity, hyperglycemia, dyslipidemia, and hypertension, and vascular endothelial injury, occurring over time. The currently available treatment options cannot effectively manage MetS. In our previous research, we revealed ChaiQi decoction (CQD) as an effective prescription for improving MetS; however, the specific mechanism remains unclear. Herein, we assessed the efficacy and mechanism of CQD in ApoE gene knockout (ApoE-) mice. Mice were administered with CQD daily for 12 weeks, and the measurement of their body weight was taken monthly. To evaluate the metabolic levels of mice, we determined the fasting blood glucose (FBG), fasting serum insulin (FINS), insulin resistance index (IRI), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels. Furthermore, immunohistochemical analysis was adopted to determine the expression of ICAM-1 and VCAM-1 in vascular endothelium, while an optical microscope was adopted to observe the pathological morphology of abdominal aorta in mice. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) levels were determined using the ELISA method, whereas Western blotting was used to determine nuclear factor- (NF-) κB p65. Of note, intragastric CQD administration ameliorated ApoE-model mice, as evidenced by reduced levels of FBG, FINS, IRI, TG, TC, and LDL-C. Furthermore, CQD alleviated vascular endothelial injury and regularized the structure of the abdominal aorta by downregulating the expressions of proinflammatory cytokines TNF-α, IL-6, ICAM-1, VCAM-1, and NF-κB p65. Overall, these findings advocated that CQD ameliorates metabolic levels and vascular endothelial injury in mice by downregulating the inflammatory response and thus may be utilized as a novel MetS therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA