Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int Immunopharmacol ; 122: 110550, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37451016

RESUMO

Liver fibrosis is a reversible pathological process and a wound healing response to liver injury. As an early stage of various liver diseases, liver fibrosis can develop into cirrhosis, liver failure, and even liver cancer if not controlled in time. Salvia miltiorrhiza is a medicinal plant with hepatoprotective effects. Salvianolic acid B (Sal B) is the representative component of S. miltiorrhiza. Many studies have reported the anti-liver fibrosis effects and mechanisms of Sal B. However, the direct anti-fibrotic targets of Sal B have not yet been reported. Platelet-derived growth factor receptor ß (PDGFRß) is one of the most classical targets in liver fibrosis, which is closely related to hepatic stellate cells (HSCs) activated. Previously, we established and applied a PDGFRß affinity chromatography model, and found that Sal B binds well to PDGFRß. Therefore, this study aimed to investigate the direct targets of Sal B against liver fibrosis. We confirmed the binding ability of Sal B to PDGFRß by molecular docking and a surface plasmon resonance biosensor. Our findings indicated that Sal B targeted PDGFRß to inhibit the activation, migration and proliferation of HSCs and suppressed the PDGF-BB-induced PDGFRß signaling pathway. Annexin V-FITC/PI assay showed that Sal B reversed the PDGF-BB-induced decrease in HSC apoptosis rate. In the mouse liver fibrosis model, Sal B inhibited the PDGFRß signaling pathway, HSC activation and reduced inflammatory response, ultimately improved CCl4-induced liver fibrosis. In summary, the direct anti-fibrotic targets of Sal B may be PDGFRß, and this study clarified the anti-liver fibrosis effects and mechanism of Sal B.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Animais , Becaplermina/farmacologia , Simulação de Acoplamento Molecular , Cirrose Hepática/metabolismo , Fibrose
2.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677610

RESUMO

Compared with traditional oral and injection administration, the transdermal administration of traditional Chinese medicine has distinctive characteristics and advantages, which can avoid the "first pass effect" of the liver and the destruction of the gastrointestinal tract, maintain a stable blood concentration, and prolong drug action time. However, the basic theory and technology research in transdermal drug delivery are relatively limited at present, especially regarding research on new carriers of transdermal drug delivery and pharmacokinetic studies of the skin, which has become a bottleneck of transdermal drug delivery development. Triptolide is one of the main active components of Tripterygium wilfordii, which displays activities against mouse models of polycystic kidney disease and pancreatic cancer but its physical properties and severe toxicity limit its therapeutic potential. Due to the previously mentioned advantages of transdermal administration, in this study, we performed a detail analysis of the pharmacokinetics of a new transdermal triptolide delivery system. Triptolide nanoemulsion gels were prepared and served as new delivery systems, and the ex vivo characteristics were described. The metabolic characteristics of the different triptolide transdermal drug delivery formulations were investigated via skin-blood synchronous microdialysis combined with LC/MS. A multiscale modeling framework, molecular dynamics and finite element modeling were adopted to simulate the transport process of triptolide in the skin and to explore the pharmacokinetics and mathematical patterns. This study shows that the three-layer model can be used for transdermal drug delivery system drug diffusion research. Therefore, it is profitable for transdermal drug delivery system design and the optimization of the dosage form. Based on the drug concentration of the in vivo microdialysis measurement technology, the diffusion coefficient of drugs in the skin can be more accurately measured, and the numerical results can be verified. Therefore, the microdialysis technique combined with mathematical modeling provides a very good platform for the further study of transdermal delivery systems. This research will provide a new technology and method for the study of the pharmacokinetics of traditional Chinese medicine transdermal drug delivery. It has important theoretical and practical significance in clarifying the metabolic transformation of percutaneous drug absorption and screening for appropriate drugs and dosage forms of transdermal drug delivery.


Assuntos
Absorção Cutânea , Pele , Camundongos , Animais , Administração Cutânea , Pele/metabolismo , Sistemas de Liberação de Medicamentos
3.
Phytomedicine ; 107: 154435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155216

RESUMO

BACKGROUND: Long non-coding RNA (LncRNAs) have been reported to play an important role in liver fibrosis and are closely associated with hepatic stellate cell (HSC) activation. We previously found that salvianolic acid B (Sal B) improves liver fibrosis by regulating the NF-κB signaling pathway. However, whether the LncRNA, regulator of reprogramming (LncRNA-ROR) plays a role in Sal B-mediated anti-fibrosis effects via the NF-κB signaling pathway remain unclear. PURPOSE: This study aimed to evaluate the effects of Sal B on HSC activation and liver fibrosis and investigate its mechanism from the perspective of LncRNA-ROR-mediated NF-κB signaling pathways. METHODS: LX-2 and T6 cell lines were cultured. Animal models of liver fibrosis were established using CCl4 in male BALB/c mice. Primary HSCs were isolated from mice and cultured. Serum biochemical and liver histological analyses were performed to evaluate the effects of Sal B on liver fibrosis. The index of HSC activation and the expression of LncRNA-ROR, microRNAs (miRNAs), and inflammatory factors were determined by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) or immunofluorescence staining. Cell proliferation was measured by a Cell Counting Kit-8 (CCK-8). NF-κB signaling-associated protein levels were assessed using western blotting or immunofluorescence staining. A luciferase reporter assay was used to detect transcription activity. RESULTS: In this study, a lower level of LncRNA-ROR was found during Sal B attenuating HSC activation in HSCs. Mechanistically, Sal B impeded the NF-κB signaling pathway to inhibit HSC proliferation and activation by downregulating LncRNA-ROR. Additionally, Sal B upregulated miR-6499-3p to target LncRNA-ROR for degradation. Functionally, Sal B treatment ameliorated CCl4-induced liver fibrosis in mice by inhibiting HSC activation. CONCLUSION: Sal B suppresses HSC activation and liver fibrosis via regulation of miR-6499-3p/LncRNA-ROR-mediated NF-κB signaling pathway. These results reveal a new molecular mechanism of Sal B on liver fibrosis from the insight of LncRNAs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Benzofuranos , Depsídeos , Células Estreladas do Fígado , Cirrose Hepática/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
4.
Front Psychiatry ; 13: 961513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032232

RESUMO

Introduction: Sleep health is an important part of health and has become a common concern of society. For anxiety insomnia, the commonly used clinical therapies have limitations. Alternative and complementary therapy is gradually rising and showing remarkable effect in clinical practice. This is the first study to evaluate the therapeutic effect of Taijiquan combined with acupoint pressing in the treatment of anxiety insomnia in college students and to compare the difference in intervention before and after sleep, to choose the best treatment time. Methods and analysis: This is a multicenter, single-blind, randomized controlled trial. A total of 126 eligible subjects who have passed the psychological evaluation and met inclusion criteria by completing a psychometric scale will be randomly divided into treatment group A (treat before sleep), treatment group B (treat after sleep) and control group C (waiting list group) in a ratio of 1:1:1. All the three groups will receive regular psychological counseling during the trial, and the treatment groups will practice 24-style Taijiquan and do meridian acupuncture at Baihui (DU20), Shenting (DU24), Yintang (EX-HN3), Shenmen (HT7) and Sanyinjiao (SP6). This RCT includes a 2-week baseline period, a 12-week intervention period, and a 12-week follow-up period. The main results will be measured by changes in the Pittsburgh sleep quality index (PSQI) and Hamilton anxiety scale (HAMA). The secondary results will be measured by the generalized anxiety scale (GAD-7) and insomnia severity index (ISI). The safety of the intervention will be evaluated at each assessment. The statistical analysis of data will be carried out by SPSSV.26.0 software. Discussion: We expect this trial to explore the effectiveness of Taijiquan combined with acupoint pressing in the treatment of anxiety insomnia in college students and choose the best treatment time by comparison. Clinical trial registration: [www.ClinicalTrials.gov], identifier [ChiCTR2200057003].

5.
J Nanobiotechnology ; 19(1): 360, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749742

RESUMO

In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity. Therefore, we constructed a biomimetic nanosystem based on cancer cell-platelet (PLT) hybrid membrane camouflage to co-deliver SFN and TPL taking advantage of PLT membrane with long circulation functions and tumor cell membrane with homologous targeting. The biomimetic nanosystem, SFN and TPL loaded cancer cell-PLT hybrid membrane-camouflaged liquid crystalline lipid nanoparticles ((SFN + TPL)@CPLCNPs), could simultaneously load SFN and TPL at the molar ratio of SFN to TPL close to 10:1. (SFN + TPL)@CPLCNPs achieved long circulation function and tumor targeting at the same time, promoting tumor cell apoptosis, inhibiting tumor growth, and achieving a better "synergy and attenuation effect", which provided new ideas for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Diterpenos , Lipossomos , Neoplasias Hepáticas/metabolismo , Nanopartículas , Fenantrenos , Sorafenibe , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Plaquetas/química , Linhagem Celular Tumoral , Membrana Celular/química , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/farmacologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Células RAW 264.7 , Sorafenibe/química , Sorafenibe/farmacocinética , Sorafenibe/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-34221070

RESUMO

BACKGROUND: Chuankezhi injection (CKZI) was an effective traditional Chinese medicine (TCM) injection in adjuvant bronchial asthma therapy. In this report, we used a network pharmacology method to reveal the mechanisms of CKZI for the treatment of asthma. METHODS: The candidate compounds in CKZI were determined by searching the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and China National Knowledge Infrastructure website (CNKI). The targets of candidate compounds were searched in the TCMSP, DrugBank 5.0, and SwissTargetPrediction. The disease targets were screened from the Online Mendelian Inheritance in Man (OMIM) and GeneCards. The overlapping gene symbols between candidate compounds and disease were filtered via a Venn diagram and were considered as potential targets. A protein-protein interaction (PPI) network and disease-related candidate compound-target-pathway (DC-T-P) network were visualized by Cytoscape 3.6.1. Gene Ontology (GO) functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by metascape to determine the pathways related to asthma. RESULTS: A total of 70 overlapping gene symbols were recognized as potential targets. Cytokines (IL6, TNF, and IL1B) and chemokines (CXCL8 and CCL2) could be recognized as hub genes. Asthma-related candidate compounds were mainly flavonoids, such as quercetin, luteolin, and kaempferol. The cytokine-mediated signaling pathway, cytokine receptor binding, and membrane craft were the most significant biological process (BP), molecular function (MF), and cellular component (CC) of GO function results, respectively. The relevant pathways of CKZI against asthma mainly include IL-17, NF-kappa B, HIF-1, calcium, and PI3K-Akt signaling pathways. CONCLUSION: Our research provided a theoretical basis for further investigating the mechanisms of CKZI in the treatment of asthma.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33680053

RESUMO

Reversible liver fibrosis is the consequence of diverse liver injuries. Oxidative stress combined with inflammation is the primary cause of carbon tetrachloride- (CCl4-) induced liver fibrosis. Neferine is a bibenzyl isoquinoline alkaloid, which has strong anti-inflammatory and antioxidant properties. The present study attempted to find its antiliver fibrosis effect and explore the potential mechanism to relieve oxidative stress and inflammation in rats with CCl4-induced liver fibrosis. Herein, we found that neferine noticeably mitigated fibrosis and improved liver function. Furthermore, neferine increased the activity of antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT), but decreased the level of malondialdehyde (MDA). Neferine also decreased the levels of alpha-smooth muscle actin (α-SMA), transforming growth factor ß1 (TGF-ß1), and inflammatory factors. These results may demonstrate that neferine could effectively inhibit oxidative stress and inflammation in liver fibrosis. To account for the potential mechanism by which neferine relieves oxidative stress and inflammation in liver fibrosis rats, immunohistochemistry analyses and western blotting were performed. The results showed that neferine inhibited the mitogen-activated protein kinase (MAPK) pathway, as evidenced by the reduced phosphorylation of p38 MAPK, ERK 1/2, and JNK. And it inhibited the nuclear factor- (NF-) κB/IκBα pathway, as evidenced by preventing the translocation of NF-κB into nuclei. Our findings indicated a protective role for neferine, acting as an antioxidant and anti-inflammatory agent in CCl4-induced liver fibrosis.

8.
J Ethnopharmacol ; 271: 113837, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33460755

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saposhnikovia divaricata (SD), a Chinese crude drug, has long been recognized for therapeutic effect to rheumatoid arthritis (RA). At present, the mechanisms of SD treatment in RA have not been fully understood especially on the perspective of metabolomics. AIM OF THE STUDY: To study the pharmacodynamic effects of Saposhnikovia divaricata decoction on CIA rats, and explore the therapeutic mechanism by metabolomics methods. MATERIALS AND METHODS: Wistar rats were randomly divided into normal group, CIA model group, dexamethasone group and SD decoction groups (10 g crude drug/kg, 5 g crude drug/kg and 2.5 g crude drug/kg of SDD). Body weight, arthritis scores, serum cytokine levels and histopathological parameters of rats were assessed. A metabolomics method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOFMS) was established to collect the metabolic profiles of rats and explore the metabolic changes that occurred after SDD treatment. RESULTS: SDD showed its protective effect on the affected joints, especially in the middle dosage group of SDD. Eighteen and 13 potential biomarkers for the SDD treatment of CIA rats were identified in the plasma and urine, respectively. SDD could regulate the disturbed metabolic pathways including tryptophan metabolism, glycerophospholipid catabolism, primary bile acid biosynthesis and fatty acid metabolism. CONCLUSIONS: In summary, SDD treatment could effectively alleviate symptoms of RA and regulate metabolic disorders in CIA rats.


Assuntos
Anti-Inflamatórios/farmacologia , Apiaceae/química , Artrite Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Animais , Articulação do Tornozelo/metabolismo , Articulação do Tornozelo/patologia , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Biomarcadores/sangue , Biomarcadores/urina , Cromatografia Líquida de Alta Pressão , Colágeno/toxicidade , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Espectrometria de Massas , Ratos Wistar , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-33418242

RESUMO

Screening active components targeting membrane proteins is important for drug discovery from traditional Chinese medicine. Cell membrane chromatography (CMC) has achieved a wide application in screening active components on pathological cells due to its high sensitivity and effectiveness. However, it is hard to clarify the specific target protein through simply using pathological and normal cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Based on the construction of hepatocellular carcinoma cell line SK-Hep1-GPC3 with high expression of protein Glypican-3 (GPC3), SK-Hep1-GPC3/CMC column was loaded to screen selective antitumor components from Scutellariae Radix according to the retention behaviors on column. Viscidulin I was retained on SK-Hep1-GPC3/CMC column, and showed 4.33 µM affinity to GPC3 according to surface plasmon resonance (SPR). The IC50 of viscidulin I on SK-Hep1-GPC3 cells was 18.01 µM in cell proliferation assay. Thus, this method can be applied to screen complex herbal medicines for ligands bound to specific target protein receptor related to hepatic carcinoma.


Assuntos
Antineoplásicos , Membrana Celular/metabolismo , Cromatografia de Afinidade/métodos , Glipicanas , Scutellaria baicalensis/química , Antineoplásicos/análise , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/análise , Flavonoides/metabolismo , Flavonoides/farmacologia , Glipicanas/antagonistas & inibidores , Glipicanas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Reprodutibilidade dos Testes
10.
Acta Pharm Sin B ; 11(1): 222-236, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33072499

RESUMO

Lianhuaqingwen (LHQW) capsule, a herb medicine product, has been clinically proved to be effective in coronavirus disease 2019 (COVID-19) pneumonia treatment. However, human exposure to LHQW components and their pharmacological effects remain largely unknown. Hence, this study aimed to determine human exposure to LHQW components and their anti-COVID-19 pharmacological activities. Analysis of LHQW component profiles in human plasma and urine after repeated therapeutic dosing was conducted using a combination of HRMS and an untargeted data-mining approach, leading to detection of 132 LHQW prototype and metabolite components, which were absorbed via the gastrointestinal tract and formed via biotransformation in human, respectively. Together with data from screening by comprehensive 2D angiotensin-converting enzyme 2 (ACE2) biochromatography, 8 components in LHQW that were exposed to human and had potential ACE2 targeting ability were identified for further pharmacodynamic evaluation. Results show that rhein, forsythoside A, forsythoside I, neochlorogenic acid and its isomers exhibited high inhibitory effect on ACE2. For the first time, this study provides chemical and biochemical evidence for exploring molecular mechanisms of therapeutic effects of LHQW capsule for the treatment of COVID-19 patients based on the components exposed to human. It also demonstrates the utility of the human exposure-based approach to identify pharmaceutically active components in Chinese herb medicines.

11.
Biomed Chromatogr ; 34(3): e4778, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31826299

RESUMO

Saposhnikovia divaricata is a commonly used traditional Chinese medicine in treating various diseases such as pyrexia, rheumatism and headache. So far, there have been few reports on the metabolism of orally administered Saposhnikovia divaricate decoction (SDD), hindering further study on its bioactive components and their pharmacological characteristics. In the present study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOFMS) was used coupled with principal component analysis (PCA) and partial least squared discriminant analysis (PLS-DA) to rapidly discover and identify the metabolites of SDD. According to the result of PLS-DA, a total of 139 ions of interest including 87 positive ions and 52 negative ions were extracted as SDD-related xenobiotics in urine. Finally, 12 and 65 compounds were identified as absorbed parent components and metabolites of SDD, respectively. Among them, 40 new metabolites were reported for the first time. Our results suggested that hydrolysis, hydroxylation, glucuronidation and sulfation are the major metabolic pathways of chromones, while hydroxylation, hydrogenation and sulfation are the main metabolic pathways of coumarins. This study is the first to explore the absorption and metabolism of SDD using UHPLC-Q-TOFMS, with results providing a basis for further study of its pharmacokinetics and discovery of its bioactive components.


Assuntos
Apiaceae , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Espectrometria de Massas/métodos , Animais , Cromonas/metabolismo , Cromonas/urina , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Análise Multivariada , Ratos , Ratos Wistar
12.
Drug Des Devel Ther ; 13: 1889-1900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213776

RESUMO

Background: Liver fibrosis occurs due to chronic liver disease due to multiple pathophysiological causes. The main causes for this condition are chronic alcohol abuse, nonalcoholic steatohepatitis, and infection due to hepatitis C virus. Currently, there is more and more information available about the molecular as well as cellular mechanisms, which play a role in the advancement of liver fibrosis. However, there is still no effective therapy against it. Purpose: In order to find an effective treatment against liver fibrosis, our study explored whether salvianolic acid A (SA-A), a traditional Chinese medicine extracted from the plant Danshen, could effectively inhibit the liver fibrosis, which is induced by CCl4 in vivo. Methods: The effects of SA-A were evaluated by assessing the parameters related to liver fibrosis such as body weight, histological changes, and biochemical parameters. Thereafter, the related protein or gene levels of P13K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways were determined by western blotting, real-time PCR or immunohistochemistry staining. Results: According to the results of our study, SA-A could reduce liver fibrosis by inhibiting liver function, liver fibrosis index, collagen deposition, and improving the degree of liver fibrosis in rats. Mechanistically, the PI3K/AKT/mTOR signaling cascade was inhibited by SA-A to prevent the stimulation of hepatic stellate cell, as well as the synthesis of extracellular matrix, and regulated Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways to prevent hepatocyte apoptosis. Conclusion: The novel findings of this study suggested that SA-A could reduce liver fibrosis and the molecular mechanisms behind it are closely associated with the regulation of PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways.


Assuntos
Ácidos Cafeicos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactatos/farmacologia , Cirrose Hepática/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2/metabolismo , Animais , Tetracloreto de Carbono , Caspase 3/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Int J Nanomedicine ; 14: 2267-2280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31015758

RESUMO

BACKGROUND: Gypenosides (GPS) have been used as traditional medicine for centuries with various pharmacological effects. However, its therapeutic effects were restricted owing to the poor lipid and water solubility and low absorption. This study aimed to develop nanostructured lipid carriers (NLCs) containing a bile salt formulation (sodium glycocholate, SGC) for GPS, and to evaluate the potential of the GPS-SGC-NLCs as an oral delivery system. METHODS: The preparation of GPS-SGC-NLCs was investigated using a single-factor test and a central composite design of response surface methodology. In vitro release and pharmacokinetics studies were used to evaluate the dissolution and bioavailability of GPS. Furthermore, In vivo imaging and in situ intestinal perfusion studies were performed to investigate the absorption of the preparations in the gastrointestinal tract. RESULTS: The optimised formulation yielded nanoparticles with an approximate diameter of 146.7 nm, polydispersity of 0.137, zeta potential of -56.0 mV, entrapment efficiency of 74.22% and drug loading of 4.89%. An in vitro dissolution analysis revealed the sustained release of contents from GPS-SGC-NLCs over 48 h with 56.4% of the drug released. A pharmacokinetic analysis revealed an 8.5-fold increase of bioavailability of the GPS-SGC-NLCs compared with GPS powder. In vivo imaging and in situ intestinal perfusion studies showed that SGC-NLCs could significantly increase the absorption of GPS in intestinal tract. In vitro cytotoxicity evaluated using Caco-2 cells demonstrated that GPS-SGC-NLCs decrease the cytotoxicity of the drug. CONCLUSION: The SGC-NLC formulation can significantly improve the absorption of GPS, which provides an effective approach for enhancing the oral absorption of drugs.


Assuntos
Ácidos e Sais Biliares/química , Portadores de Fármacos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Nanoestruturas/química , Administração Oral , Animais , Células CACO-2 , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Gynostemma , Humanos , Intestinos/diagnóstico por imagem , Lipídeos/administração & dosagem , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/ultraestrutura , Imagem Óptica , Tamanho da Partícula , Perfusão , Extratos Vegetais/administração & dosagem , Extratos Vegetais/sangue , Extratos Vegetais/farmacocinética , Ratos Sprague-Dawley , Ratos Wistar , Eletricidade Estática , Fatores de Tempo , Difração de Raios X
14.
J Pharm Biomed Anal ; 164: 550-556, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30458388

RESUMO

Screening active components from Chinese traditional medicine is an effective approach to discover new drugs or active structures. Cell membrane chromatography (CMC), developed rapidly because of its high sensitivity and effectiveness, has achieved a wide application in screening active components on pathological cells or tissues. However, it is hard to clarify the selectivity between pathological and normal tissues through simply using pathological cells. In this study, a novel comparative two-dimensional (2D) cell membrane chromatography system was established. Briefly, hepatic carcinoma HepG2 CMC columns and normal hepatic L02 CMC columns were simultaneously loaded to screen potential selective antitumor components from Scutellariae Radix by comparing the retention behaviors on two kinds of cells. Totally 13 components in Scutellariae Radix retained on both HepG2/ CMC and L02/ CMC columns. Among them, three components, oroxylin A, wogonin and chrysin, were screened out to perform stronger affinity on HepG2 columns, and in further cell proliferation assay, IC50 of these three compounds of HepG2 cells were 9.66 µM, 66.77 µM and 36.26 µM respectively, while of L02 cells, IC50 of chrysin was 59.10 µM and over 200 µM of the other two components. On the whole, the toxity of these three compounds to hepatoma cells was stronger than to normal cells. It can be supposed that oroxylin A, wogonin, and chrysin own the potential to be developed as selective anti-hepatoma active components, which expects further research to validate.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Scutellaria baicalensis/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas/farmacologia , Flavonoides/farmacologia , Células Hep G2 , Humanos , Concentração Inibidora 50 , Espectrometria de Massas/métodos
15.
J Chromatogr A ; 1564: 145-154, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29895409

RESUMO

Prostate cancer (PCa) is a common and fatal cancer for men and effective treatment options are still not enough for patients. Radix et Rhizoma Rhei had been applied to treat PCa long-termly and effectively when combined with surgical treatment and chemotherapy. However, its active components and target proteins are still not quite clear. As membrane receptors play a vital role in PCa, in this study, a novel strategy that combines comprehensive 2D 3-aminopropyltriethoxysilane-decorated prostate cancer cell (DU145) membrane chromatographic (CMC) system with network pharmacology approach was developed to characterize membrane binding active components proteins from Radix et Rhizoma Rhei and their targets. Thirteen active components were screened out by CMC system, among which emodin and rhapontigrnin with good membrane binding behaviors were validated to show ideal inhibitory effects on DU145 cells by cell viability and cell apoptosis assays. Five membrane proteins were predicted as the potential targets by the a specific network pharmacology approach, among which mast/stem cell growth factor receptor Kit (KIT) was identified as the most possible target by network data mining. Surface plasmon resonance analysis verified that the dissociation constant (KD) of rhapontigrnin and emodin with KIT was 6.06 × 10-5 M and 8.82 × 10-5 M, respectively. Our results showed that the combination of comprehensive 2D CMC system and network pharmacology based target identification could not only rapidly identify the membrane binding components but also find the potential membrane protein targets with high confidence, which could broaden the range of application scope of CMC, especially for the screening of active compounds from complex chemical samples using primary pathologic cell lines.


Assuntos
Membrana Celular/metabolismo , Medicamentos de Ervas Chinesas/química , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Masculino , Simulação de Acoplamento Molecular , Propilaminas/química , Neoplasias da Próstata/tratamento farmacológico , Reprodutibilidade dos Testes , Silanos/química , Ressonância de Plasmônio de Superfície
16.
J Food Drug Anal ; 26(2): 823-833, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29567254

RESUMO

Rhizoma corydalis and Radix Angelicae Dahurica (Yuanhu-Baizhi) herbal medicine pair has been used for thousands of years and has been reported to be potentially active in recent cancer therapy. But the exact active components or fractions remain unclear. In this study, a new comprehensive two-dimensional (2D) 3-aminopropyltriethoxysilane (APTES)-decorated MCF7-cell membrane chromatography (CMC)/capcell-C18 column/time-of-flight mass spectrometry system was established for screening potential active components and clarifying the active fraction of Yuanhu-Baizhi pair. APTES was modified on the surface of silica, which can provide an amino group to covalently link cell membrane fragments with the help of glutaraldehyde in order to improve the stability and column life span of the MCF7 CMC column. The comprehensive 2D MCF7-CMC system showed good separation and identification abilities. Our screen results showed that the retention components are mainly from the alkaloids in Yuanhu (12 compounds) and the coumarins (10 compounds) in Baizhi, revealing the active fractions of Yuanhu-Baizhi herbal medicine pair. Oxoglaucine, protopine, berberine, osthole, isopimpinellin and palmitic acid were selected as typical components to test the effects on cell proliferation and their IC50 were calculated as 38.17 µM, 29.45 µM, 45.42 µM, 132.7 µM, 156.8 µM and 90.5 µM respectively. Cell apoptosis assay showed that the drug efficacy was obtained mainly through inducing cell apoptosis. Furthermore, a synergistic assay results demonstrated that oxoglaucine (representative of alkaloids from Yuanhu) and isopimpinellin (representative of coumarins from Baizhi) showed significant synergistic efficacy with GFT, indicating that these components may act on other membrane receptors. The proposed 2D CMC system could also be equipped with other cells for further applications. Besides, the follow-up in-vitro experimental strategy using cell proliferation assay, cell apoptosis assay and synergistic assay proved to be a practical way to confirm the active fractions of herbal medicine.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Membrana Celular/efeitos dos fármacos , Cromatografia/métodos , Corydalis/química , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/fisiopatologia , Membrana Celular/química , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Feminino , Humanos , Células MCF-7 , Espectrometria de Massas , Plantas Medicinais/química , Propilaminas/química , Rizoma/química , Silanos/química
17.
J Chromatogr A ; 1540: 68-76, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29433821

RESUMO

Cell membrane chromatography (CMC) has been successfully applied to screen bioactive compounds from Chinese herbs for many years, and some offline and online two-dimensional (2D) CMC-high performance liquid chromatography (HPLC) hyphenated systems have been established to perform screening assays. However, the requirement of sample preparation steps for the second-dimensional analysis in offline systems and the need for an interface device and technical expertise in the online system limit their extensive use. In the present study, an offline 2D CMC-HPLC analysis combined with the XCMS (various forms of chromatography coupled to mass spectrometry) Online statistical tool for data processing was established. First, our previously reported online 2D screening system was used to analyze three Chinese herbs that were reported to have potential anti-inflammatory effects, and two binding components were identified. By contrast, the proposed offline 2D screening method with XCMS Online analysis was applied, and three more ingredients were discovered in addition to the two compounds revealed by the online system. Then, cross-validation of the three compounds was performed, and they were confirmed to be included in the online data as well, but were not identified there because of their low concentrations and lack of credible statistical approaches. Last, pharmacological experiments showed that these five ingredients could inhibit IL-6 release and IL-6 gene expression on LPS-induced RAW cells in a dose-dependent manner. Compared with previous 2D CMC screening systems, this newly developed offline 2D method needs no sample preparation steps for the second-dimensional analysis, and it is sensitive, efficient, and convenient. It will be applicable in identifying active components from Chinese herbs and practical in discovery of lead compounds derived from herbs.


Assuntos
Técnicas de Química Analítica/métodos , Cromatografia Líquida de Alta Pressão , Interpretação Estatística de Dados , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Membrana Celular/química , Técnicas de Química Analítica/instrumentação , Humanos , Sistemas On-Line
18.
Discov Med ; 23(125): 81-94, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28371611

RESUMO

BACKGROUND AND AIMS: Tanshinol is a water-soluble bioactive monomer purified from the dried root of Salvia miltiorrhiza and has been reported to exert hepatoprotective efficacy in rodents. However, detailed knowledge remains limited about tanshinol's effects on hepatic stellate cells (HSC) functions, which play an essential role in the progression of hepatic fibrosis. Our research primarily focused on the effects of tanshinol on activation and apoptosis of HSC and further investigated PI3K/AKT/mTOR/p70S6K1 signaling pathways' participation in the pathogenesis of hepatic fibrosis in carbon tetrachloride (CCl4)-induced hepatic fibrosis. METHODS: The antifibrotic effects of tanshinol on the development of fibrosis were established through CCl4-induced rat models. 48 male Sprague-Dawley (SD) rats were randomized to the normal group, CCl4 model group, and two tanshinol treatment groups, including a lower dosage group as well as a higher dosage group. RESULTS: Tanshinol prominently mitigated liver fibrosis and reduced levels of alanine aminotransferase (ALT), aspartate transaminase (AST), hydroxyproline content, and other serum markers of liver fibrosis. Concomitantly, tanshinol regulated the degradation of extracellular matrix as well as hepatic sinusoid and inhibited the expression of inflammation-related genes. Tanshinol promoted apoptosis of the activated HSC and increased cleaved caspase 3 levels and the number of TUNEL-positive HSC in two tanshinol-administered groups. In addition, tanshinol significantly inhibited the expression of phosphorylated AKT, phosphorylated mTOR, and phosphorylated p70S6K1 proteins. CONCLUSIONS: This study demonstrates that tanshinol exerts antifibrotic effects through targeting multiple mechanisms correlated with PI3K/AKT/mTOR/p70S6K1 signaling pathways, and has the prospect of becoming a new treatment strategy for hepatic fibrosis.


Assuntos
Ácidos Cafeicos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alanina Transaminase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Western Blotting , Tetracloreto de Carbono/toxicidade , Imuno-Histoquímica , Cirrose Hepática/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
19.
Int Immunopharmacol ; 47: 126-133, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28391159

RESUMO

Quercetin, a natural flavonoid, has been used as a nutritional supplement for its anti-inflammatory and antioxidative properties. Quercetin was reported to exhibit a wide range of pharmacological properties, including its effect on anti-hepatic fibrosis. However, the anti-fibrotic mechanisms of quercetin have not been well-characterized to date. This study aimed to investigate the protective effects of quercetin on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and to clarify its anti-hepatofibrotic mechanisms. We demonstrated that quercetin exhibited in-vivo hepatoprotective and anti-fibrogenic effects against CCl4-induced liver injury by improving the pathological manifestations, thereby reducing the activities of serum total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and decreasing the serum levels of hyaluronic acid (HA), laminin (LN), type IV collagen (IV-C) and procollagen III peptide (PIIIP). Furthermore, treatment with quercetin 5-15mg/kg inhibited the activation of NF-κB in a dose-dependent manner via inhibition of IкBα degradation and decreased the expression of p38 MAPK by inhibiting its phosphorylation. Additionally, in a dose-dependent manner, quercetin down-regulated Bax, up-regulated Bcl-2, and subsequently inhibited caspase-3 activation. Moreover, quercetin regulated inflammation factors and hepatic stellate cells (HSCs)-activation markers, such as TNF-α, IL-6, IL-1ß, Cox-2, TGF-ß, α-SMA, Colla1, Colla2, TIMP-1, MMP-1, and desmin. Taken together, quercetin prevented the progression of liver fibrosis in SD rats. The anti-fibrotic mechanisms of quercetin might be associated with its ability to regulate NF-кB/IкBα, p38 MAPK anti-inflammation signaling pathways to inhibit inflammation, and regulate Bcl-2/Bax anti-apoptosis signaling pathway to prevent liver cell apoptosis.


Assuntos
Antioxidantes/uso terapêutico , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Quercetina/uso terapêutico , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bilirrubina/sangue , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Estreladas do Fígado/patologia , Humanos , Mediadores da Inflamação/metabolismo , Cirrose Hepática/induzido quimicamente , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Ethnopharmacol ; 180: 87-96, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26806573

RESUMO

Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C9 activities.


Assuntos
Abietanos/farmacologia , Anti-Hipertensivos/farmacocinética , Benzofuranos/farmacologia , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Losartan/farmacocinética , Animais , Anti-Hipertensivos/sangue , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP3A/genética , Interações Medicamentosas , Medicamentos de Ervas Chinesas/farmacologia , Losartan/sangue , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA