Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1204122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492256

RESUMO

Introduction: Saccharomyces boulardii (S. boulardii) has shown clinical beneficial effect in inflammatory bowel diseases recently. However, the underlying mechanisms remain incompletely understood. The aim of present study was to tested whether S. boulardii targets gut microbiota to protect against the development of experimental colitis in mice. Methods: Female C57BL/6 mice were gavaged with S. boulardii for 3 weeks before being challenged with dextran sulphate sodium to induce ulcerative colitis. Bodyweight, diarrhea severity, intestinal permeability, colonic histopathology, colonic inflammatory status, and epithelial cell death of mice were examined. The fecal microbiota and its metabolomic profiles were detected by 16S rDNA sequencing and UPLC-MS, respectively. Results and Discussion: Supplementation with S. boulardii significantly prevented weight loss and colon shortening, lowered colonic inflammation, ameliorated epithelial injury, and enhanced the intestinal barrier integrity in colitis mice. By inhibiting the abundance of pathogenic bacteria and increasing the probiotics abundance, S. boulardii improved the microbial diversity and restored the microbiota dysbiosis. Moreover, it also modulated microbial metabolome and altered the relative contents of metabolites involving amino acids, lipids, energy and vitamin metabolisms. These yeast-driven shifts in gut flora and metabolites are were associated with each other and with the inflammation profile in colitis. Collectively, S. boulardii exerts protective effects on colitis in mice by reshaping gut microbiome and its metabolic profile, indicating it as a promising therapeutic avenue.

2.
Nutr Rev ; 81(5): 578-586, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36040377

RESUMO

The pathogenesis of inflammatory bowel disease (IBD) is related to genetic susceptibility, enteric dysbiosis, and uncontrolled, chronic inflammatory responses that lead to colonic tissue damage and impaired intestinal absorption. As a consequence, patients with IBD are prone to nutrition deficits after each episode of disease resurgence. Nutritional supplementation, especially for protein components, is often implemented during the remission phase of IBD. Notably, ingested nutrients could affect the progression of IBD and the prognostic outcome of patients; therefore, they should be cautiously evaluated prior to being used for IBD intervention. Arginine (Arg) is a semi-essential amino acid required for protein synthesis and intimately associated with gut pathophysiology. To help optimize arginine-based nutritional intervention strategies, the present work summarizes that during the process of IBD, patients manifest colonic Arg deficiency and the turbulence of Arg metabolic pathways. The roles of Arg-nitric oxide (catalyzed by inducible nitric oxide synthase) and Arg-urea (catalyzed by arginases) pathways in IBD are debatable; the Arg-polyamine and Arg-creatine pathways are mainly protective. Overall, supplementation with Arg is a promising therapeutic strategy for IBD; however, the dosage of Arg may need to be carefully tailored for different individuals at different disease stages. Additionally, the combination of Arg supplementation with inhibitors of Arg metabolic pathways as well as other treatment options is worthy of further exploration.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Suplementos Nutricionais , Arginina , Inflamação , Nutrientes
3.
Curr Pharm Biotechnol ; 23(8): 1080-1093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636307

RESUMO

BACKGROUND: Sleep curtailment is a serious problem in many societies. Clinical evidence has shown that sleep deprivation is associated with mood dysregulation, formation of false memory, cardio-metabolic risk factors and outcomes, inflammatory disease risk, and all-cause mortality. The affective disorder dysregulation caused by insufficient sleep has become an increasingly serious health problem. However, to date, not much attention has been paid to the mild affective dysregulation caused by insufficient sleep, and there is no clear and standard therapeutic method to treat it. The Xiaoyao Pill is a classic Chinese medicinal formula, with the effect of dispersing stagnated hepatoqi, invigorating the spleen, and nourishing the blood. Therefore, it is most commonly used to treat gynecological diseases in China. In the present study, the effects of the Xiaoyao Pill on affective dysregulation of sleep-deprived mice and its underlying molecular mechanisms were investigated. METHODS: Forty adult female mice were used in the present study. The sleep deprivation model was established by improving the multi-platform water environment method. After 7 consecutive days of sleep deprivation, the mice were administrated low (LXYP, 0.32mg/kg) and high (HXYP, 0.64 mg/kg) doses of the Xiaoyao Pill for two weeks. Then, the body weight, behavioral deficits, and histopathology were evaluated. Meanwhile, the expression of c-fos protein and the concentrations of monoamine neurotransmitters in the hippocampus and prefrontal cortex were determined after two weeks of treatment. RESULTS: Xiaoyao Pill treatment significantly increased body weight and sucrose consumption and decreased the irritability scores of the sleep-deprived mice. Meanwhile, Xiaoyao Pill treatment prevented brain injury and inhibited the expression of c-fos protein in the hippocampus and prefrontal cortex. In addition, HXYP treatment significantly upregulated the levels of NE in the hippocampus and prefrontal cortex (p < 0.01). LXYP treatment significantly up-regulated the levels of 5-HT in the prefrontal cortex. Meanwhile, both HXYP and LXYP treatment significantly upregulated the levels of DA in the prefrontal cortex (p < 0.05 or p < 0.01) of sleep-deprived mice. CONCLUSION: The present study demonstrates that Xiaoyao Pill treatment prevented the behavioral deficits of mice induced by sleep deprivation by promoting the recovery of brain tissue injury and up-regulating the levels of NE, 5-HT, and DA in the brain tissue.


Assuntos
Lesões Encefálicas , Privação do Sono , Animais , Peso Corporal , Lesões Encefálicas/metabolismo , Medicamentos de Ervas Chinesas , Feminino , Hipocampo , Camundongos , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/farmacologia , Serotonina/metabolismo , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA