Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 556-563, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35668619

RESUMO

Sweet potato vine, the byproduct of sweet potato, has a high nutritional value. Silage is an effective solution for nutrient preservation. This article explored the effects of sweet potato vine silage (SPVS) supplementation on meat quality, antioxidant capacity and immune function in finishing pigs. One hundred and eighty finishing pigs (Berkshire × Licha Black) with a body weight of 74.54 ± 3.32 kg were randomly divided into three groups. The three groups were separately fed basal diet (Ctrl), Ctrl supplemented with 2.5% SPVS (LSPVS) or 5% SPVS (HSPVS) on a dry matter basis. Results showed that the eye muscle area in the LSPVS group was significantly increased. The carcass weight in the HSPVS was significantly reduced compared with Ctrl. For the meat quality, only cooking loss in both HSPVS and LSPVS was reduced while other indexes had no significant differences. For the antioxidant capacity, the hepatic level of glutathione (GSH) peroxidase (GSH-PX) was significantly upregulated in LSPVS but downregulated in HSPVS. In the serum, HSPVS decreased GSH level and increased GSH-PX level. HSPVS significantly reduced hepatic interleukin-1ß (IL-1ß) levels and LSPVS significantly reduced IL-12 levels and increased IL-8 and IL-6 levels. Moreover, HSPVS and LSPVS promoted the secretion of immunoglobulin M (IgM) and IgG in the serum. Our data showed that low-dose SPVS supplementation improved carcass traits and high-dose SPVS supplementation increased immune function in finishing pigs, which provides a new alternative to improve animal health.


Assuntos
Antioxidantes , Ipomoea batatas , Suínos , Animais , Silagem , Ração Animal/análise , Suplementos Nutricionais , Carne/análise , Glutationa , Imunidade
2.
Food Funct ; 12(15): 6712-6724, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34160501

RESUMO

Branched chain amino acids (BCAA), especially leucine (Leu), have been reported to decrease fat deposition. However, opposite effects of BCAA on lipid metabolism have been observed. To determine the role of BCAA in lipid metabolism, an amino acid-defined diet was formulated and C57BL/6J mice were assigned into the following groups: amino acid-defined control diet and control diet supplemented with Leu, isoleucine, or valine. Nitrogen was balanced by proportionally mixed amino acids except BCAA. Results showed that dietary Leu supplementation significantly increased the levels of serum triglycerides, total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol and urea nitrogen. Metabolomics showed that biosynthesis of unsaturated fatty acids was altered by Leu supplementation. Leu treatment up-regulated the expression of genes related to fat synthesis and down-regulated the expression of genes related to fatty acid synthesis. Furthermore, the genes and proteins of selective markers involved in browning of white adipose tissue (WAT) were up-regulated by dietary supplementation with Leu. This study indicated that dietary supplementation with Leu, but not isoleucine or valine, significantly affected lipid metabolism by regulating lipid metabolism-related genes and serum fatty acid concentration, providing a new tool in the management of obesity and metabolic disorders.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Aminoácidos de Cadeia Ramificada/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Suplementos Nutricionais , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Food Funct ; 12(1): 267-277, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33300530

RESUMO

Emerging evidence shows that amino acids can modulate lipid metabolism. Aromatic amino acids (AAAs) serve as important precursors of several neurotransmitters and metabolic regulators that play a vital role in regulating nutrient metabolism. But whether AAAs have a lipid-lowering function remains unknown. Here mice were fed amino acid-defined diets containing AAAs at 1.82% and 3.64% for 3 weeks. We demonstrated that double AAA intake significantly decreased the serum and hepatic triglycerides and serum low-density lipoprotein cholesterol, but increased the high-density lipoprotein cholesterol as well as insulin tolerance. Combined metabolomic and transcriptomic analysis showed that the hepatic acidic pathway of bile acid synthesis was responsible for the improvement in lipid metabolism by AAA treatment. This study suggests that AAAs have the potential to ameliorate steatosis and provides a new alternative to improve lipid metabolism.


Assuntos
Aminoácidos Aromáticos/farmacologia , Ácidos e Sais Biliares/biossíntese , Suplementos Nutricionais , Fígado Gorduroso/tratamento farmacológico , Triglicerídeos/sangue , Aminoácidos Aromáticos/administração & dosagem , Aminoácidos Aromáticos/sangue , Animais , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
ACS Omega ; 5(48): 30937-30945, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324801

RESUMO

Branched-chain amino acids (BCAAs), particularly leucine, were reported to decrease obesity and relevant metabolic syndrome. However, whether valine has a similar effect has rarely been investigated. In the present study, mice were assigned into four treatments (n = 10): chow diet supplemented with water (CW) or valine (CV) and high-fat diet supplemented with water (HW) or valine (HV). Valine (3%, w/v) was supplied in the drinking water. The results showed that valine treatment markedly increased serum triglyceride and insulin levels of chow diet-fed mice. The body weight, serum triglyceride level, white adipose tissue weight, and glucose and insulin intolerance were significantly elevated by valine supplementation in high-fat diet-fed mice. Metabolomics and transcriptomics showed that several genes related to fat oxidation were downregulated, and arachidonic acid and linoleic acid metabolism were altered in the HV group compared to the HW group. In conclusion, valine supplementation did not suppress lipid deposition and metabolic disorders in mice, which provides a new understanding for BCAAs in the modulation of lipid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA