Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 129(4): 675-688, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26714697

RESUMO

KEY MESSAGE: Only three variants of nonrestoring alleles for sugar beet Rf1 were found from the US maintainer lines which were the selections from a broad range of genetic resources. Cytoplasmic male sterility is widely used for hybrid breeding of sugar beets. Specific genotypes with a nonsterility-inducing cytoplasm and a nonrestoring allele of restorer-of-fertility gene (rf) are called maintainers. The infrequent occurrence of the maintainer genotype evokes the need to diagnose rf alleles. Molecular analysis of Rf1, one of the sugar beet Rfs, revealed a high level of nucleotide sequence diversity, but three variants were tightly associated with maintainer selection in Japan. The question was raised whether this small number of variants would be seen in cases where a wider range of genetic resources was used for maintainer selection. Fifty-seven accessions registered as maintainers in the USDA germplasm collection were characterized in this study. Mitochondrial DNA types (mitotypes) of 551 plants were diagnosed based on minisatellite polymorphism. A mitotype associated with sterility-inducing (S) cytoplasm was identified in 58 plants, indicating S-cytoplasm contamination. The organization of rf1 was investigated by two PCR markers and DNA gel blot analysis. Eight haplotypes were found among the US maintainers, but subsequently two haplotypes were judged as restoring alleles after a test cross and another haplotype was not inherited by the progeny. Nucleotide sequences of rf1 regions in the remaining five haplotypes were compared, and despite the sequence diversity of the gene-flanking regions, the gene-coding regions were identified to be three types. Therefore, there are three rf1 variants in US maintainers, the same number as in the Japanese sugar beet germplasm collection. The implications of having a small repertoire of rf1 variants are discussed.


Assuntos
Beta vulgaris/genética , Genes de Plantas , Infertilidade das Plantas/genética , Alelos , DNA Mitocondrial/genética , DNA de Plantas/genética , Marcadores Genéticos , Genótipo , Haplótipos , Repetições Minissatélites , Análise de Sequência de DNA
2.
Plant J ; 83(2): 290-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26031622

RESUMO

Genetic conflict between cytoplasmically inherited elements and nuclear genes arising from their different transmission patterns can be seen in cytoplasmic male sterility (CMS), the mitochondrion-encoded inability to shed functional pollen. CMS is associated with a mitochondrial open reading frame (ORF) that is absent from non-sterility inducing mitochondria (S-orf). Nuclear genes that suppress CMS are called restorer-of-fertility (Rf) genes. Post-transcriptional and translational repression of S-orf mediates the molecular action of Rf that encodes a class of RNA-binding proteins with pentatricopeptide repeat (PPR) motifs. Besides the PPR-type of Rfs, there are also non-PPR Rfs, but the molecular interactions between non-PPR Rf and S-orf have not been described. In this study, we investigated the interaction of bvORF20, a non-PPR Rf from sugar beet (Beta vulgaris), with preSatp6, the S-orf from sugar beet. Anthers expressing bvORF20 contained a protein that interacted with preSATP6 protein. Analysis of anthers and transgenic calli expressing a FLAG-tagged bvORF20 suggested the binding of preSATP6 to bvORF20. To see the effect of bvORF20 on preSATP6, which exists as a 250-kDa protein complex in CMS plants, signal bands of preSATP6 in bvORF20-expressing and non-expressing anthers were compared by immunoblotting combined with Blue Native polyacrylamide gel electrophoresis. The signal intensity of the 250-kDa band decreased significantly, and 200- and 150-kDa bands appeared in bvORF20-expressing anthers. Transgenic callus expressing bvORF20 also generated the 200- and 150-kDa bands. The 200-kDa complex is likely to include both preSATP6 and bvORF20. Post-translational interaction between preSATP6 and bvORF20 appears to alter the higher order structure of preSATP6 that may lead to fertility restoration in sugar beet.


Assuntos
Beta vulgaris/fisiologia , Citoplasma/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Beta vulgaris/metabolismo , Fertilidade , Fases de Leitura Aberta , Ligação Proteica
3.
Theor Appl Genet ; 127(12): 2567-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25287614

RESUMO

KEY MESSAGE: By genetically eliminating the major restorer - of - fertility gene ( Rf ), a weak Rf gene was unveiled. It is an allele of Z , long known as an elusive Rf gene in sugar beet. In the hybrid breeding of sugar beet, maintainer-genotype selection is a laborious process because of the dependence on test crossing, despite the very low occurrence of this genotype. Marker-assisted selection (MAS) of the maintainer genotype is highly desired by sugar beet breeders. The major restorer-of-fertility gene (Rf) was identified as Rf1, and its non-restoring allele (rf1) was discriminated at the DNA level; however, some of the rf1rf1 selections retained an as yet unidentified Rf, another target locus for MAS. The objective of this study was to identify this Rf. An rfrf1 plant was crossed to a cytoplasmic male-sterile sugar beet and then backcrossed to obtain progeny segregating the unidentified Rf. The progeny exhibited partial male-fertility restoration that was unstable in single plants. The segregation ratio of restored vs. non-restored plants suggested the involvement of a single Rf in this male-fertility restoration, designated as Rf2. We confirmed the feasibility of molecular tagging of Rf2 by identifying four shared amplified fragment length polymorphism (AFLP) fragments specific to 17 restored plants. Bulked segregant analysis also was performed to screen the Rf2-linked AFLP markers, which were subsequently converted into 17 sequence-tagged site markers. All the markers, as well two additional chromosome-IV-assigned markers, were linked to each other to form a single linkage map, on which Rf2 was located. Our data suggested that Rf2 is likely an allele of Z, long known as an elusive Rf gene in sugar beet. We also discuss the importance of Rf2 for sugar beet breeding.


Assuntos
Beta vulgaris/genética , Mapeamento Cromossômico , Genes de Plantas , Infertilidade das Plantas/genética , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Cromossomos de Plantas , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genótipo , Endogamia , Fenótipo , Locos de Características Quantitativas , Sitios de Sequências Rotuladas
4.
Gene ; 517(1): 19-26, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23305819

RESUMO

The endosymbiotic theory postulates that many genes migrated from endosymbionts to the nuclear genomes of their hosts. Some migrated genes lack presequences directing proteins to mitochondria, and their mitochondrial targeting signals appear to be inscribed in the core coding regions as internal targeting signals (ITSs). ITSs may have evolved after sequence transfer to nuclei or ITSs may have pre-existed before sequence transfer. Here, we report the molecular cloning of a sugar beet gene for ribosomal protein S19 (Rps19; the first letter is capitalized when the gene is a nuclear gene). We show that sugar beet Rps19 (BvRps19) is an ITS-type gene. Based on amino-acid sequence comparison, dicotyledonous rps19s (the first letter is lower-cased when the gene is a mitochondrial gene), such as tobacco rps19 (Ntrps19), resemble an ancestral form of BvRps19. We investigated whether differences in amino-acid sequences between BvRps19 and Ntrps19 were involved in ITS evolution. Analyses of the intracellular localization of chimaeric GFP-fusion proteins that were transiently expressed in Welsh onion cells showed that Ntrps19-gfp was not localized in mitochondria. When several BvRps19-type amino acid substitutions, none of which was seen in any other angiosperm rps19, were introduced into Ntrps19-gfp, the modified Ntrps19-gfp became localized in mitochondria, supporting the notion that an ITS in BvRps19 evolved following sequence transfer to nuclei. Not all of these substitutions were seen in other ITS-type Rps19s, suggesting that the ITSs of Rps19 are diverse.


Assuntos
Beta vulgaris/metabolismo , Evolução Biológica , Núcleo Celular/genética , Mitocôndrias/metabolismo , Nicotiana/metabolismo , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Mitocondrial/genética , Genoma de Planta , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos
5.
Genetics ; 192(4): 1347-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22997236

RESUMO

Male gametogenesis in plants can be impaired by an incompatibility between nuclear and mitochondrial genomes, termed cytoplasmic male sterility (CMS). A sterilizing factor resides in mitochondria, whereas a nuclear factor, Restorer-of-fertility (Rf), restores male fertility. Although a majority of plant Rf genes are thought to encode a family of RNA-binding proteins called pentatrico-peptide repeat (PPR) proteins, we isolated a novel type of Rf from sugar beet. Two BACs and one cosmid clone that constituted a 383-kbp contig covering the sugar beet Rf1 locus were sequenced. Of 41 genes borne by the contig, quadruplicated genes were found to be associated with specific transcripts in Rf1 flower buds. The quadruplicated genes encoded a protein resembling OMA1, a protein known from yeast and mammals to be involved in mitochondrial protein quality control. Construction of transgenic plants revealed that one of the four genes (bvORF20) was capable of restoring partial pollen fertility to CMS sugar beet; the level of restoration was comparable to that evaluated by a crossing experiment. However, the other genes lacked such a capability. A GFP-fusion experiment showed that bvORF20 encoded a mitochondrial protein. The corresponding gene was cloned from rf1rf1 sugar beet and sequenced, and a solitary gene that was similar but not identical to bvORF20 was found. Genetic features exhibited by sugar beet Rf1, such as gene clustering and copy-number variation between Rf1 and rf, were reminiscent of PPR-type Rf, suggesting that a common evolutionary mechanism(s) operates on plant Rfs irrespective of the translation product.


Assuntos
Beta vulgaris/fisiologia , Genes de Plantas , Proteínas de Plantas/genética , Beta vulgaris/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Clonagem Molecular , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metaloproteases/genética , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA