Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549154

RESUMO

We attempted to replicate a potential tinnitus biomarker in humans based on the Sensory Precision Integrative Model of Tinnitus called the Intensity Mismatch Asymmetry. A few advances on the design were also included, including tighter matching of participants for gender, and a control stimulus frequency of 1 kHz to investigate whether any differences between control and tinnitus groups are specific to the tinnitus frequency or domain-general. The expectation was that there would be asymmetry in the MMN responses between tinnitus and control groups at the tinnitus frequency, but not at the control frequency, where the tinnitus group would have larger, more negative responses to upward deviants than downward deviants, and the control group would have the opposite pattern or lack of a deviant direction effect. However, no significant group differences were found. There was a striking difference in response amplitude to control frequency stimuli compared to tinnitus frequency stimuli, which could be an intrinsic quality of responses to these frequencies or could reflect high frequency hearing loss in the sample. Additionally, the upward deviants elicited stronger MMN responses in both groups at tinnitus frequency, but not at the control frequency. Factors contributing to these discrepant results at the tinnitus frequency could include hyperacusis, attention, and wider contextual effects of other frequencies used in the experiment (i.e. the control frequency in other blocks).


Assuntos
Potenciais Evocados Auditivos , Zumbido , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Zumbido/diagnóstico , Atenção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA