Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(13): 4082-4102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705749

RESUMO

Epalrestat, an aldose reductase inhibitor (ARI), has been clinically adopted in treating diabetic neuropathy in China and Japan. Apart from the involvement in diabetic complications, AR has been implicated in inflammation. Here, we seek to investigate the feasibility of clinically approved ARI, epalrestat, for the treatment of rheumatoid arthritis (RA). The mRNA level of AR was markedly upregulated in the peripheral blood mononuclear cells (PBMCs) of RA patients when compared to those of healthy donors. Besides, the disease activity of RA patients is positively correlated with AR expression. Epalrestat significantly suppressed lipopolysaccharide (LPS) induced TNF-α, IL-1ß, and IL-6 in the human RA fibroblast-like synoviocytes (RAFLSs). Unexpectedly, epalrestat treatment alone markedly exaggerated the disease severity in adjuvant induced arthritic (AIA) rats with elevated Th17 cell proportion and increased inflammatory markers, probably resulting from the increased levels of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA). Interestingly, the combined treatment of epalrestat with N-Acetylcysteine (NAC), an anti-oxidant, to AIA rats dramatically suppressed the production of 4-HNE, MDA and inflammatory cytokines, and significantly improved the arthritic condition. Taken together, the anti-arthritic effect of epalrestat was diminished or even overridden by the excessive accumulation of toxic 4-HNE or other reactive aldehydes in AIA rats due to AR inhibition. Co-treatment with NAC significantly reversed epalrestat-induced upregulation of 4-HNE level and potentiated the anti-arthritic effect of epalrestat, suggesting that the combined therapy of epalrestat with NAC may sever as a potential approach in treating RA. Importantly, it could be regarded as a safe intervention for RA patients who need epalrestat for the treatment of diabetic complications.


Assuntos
Acetilcisteína , Artrite Reumatoide , Humanos , Animais , Ratos , Acetilcisteína/uso terapêutico , Leucócitos Mononucleares , Aldeídos , Artrite Reumatoide/tratamento farmacológico
2.
Front Plant Sci ; 11: 612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508864

RESUMO

Ilex asprella is a medicinal plant that is used extensively in southern China. The plant contains ursane-type triterpenoids and triterpenoid saponins which are known to be responsible for its pharmacological activities. Previously, a transcriptomic analysis of I. asprella was carried out and the gene IaAS1, which is important in the formation of the core structure α-amyrin, was identified. However, the genes related to the subsequent derivatization of the core structures of the triterpenoid remain largely unknown. Herein, we describe the cloning and functional characterization of an amyrin 28-carboxylase IaAO1 (designated as IaCYP716A210) and a glycosyltransferase IaAU1 (designated as UGT74AG5), based on transcriptomic data. The expression of IaAO1 in an α-amyrin producing yeast strain led to the accumulation of ursolic acid. An enzyme assay using recombinant protein IaAU1 purified from E. coli revealed that IaAU1 can catalyze the conversion of ursolic acid to ursolic acid 28-O-ß-D-glucopyranoside. IaAU1 has regiospecificity for catalyzing the 28-O-glucosylation of ursane-/oleanane-type triterpene acids, as it can also catalyze the conversion of oleanolic acid, hederagenin, and ilexgenin A to their corresponding glycosyl compounds. Moreover, co-expression of IaAO1 and IaAU1 in the α-amyrin-producing yeast strain led to the production of ursolic acid 28-O-ß-D-glucopyranoside, although in relatively low amounts. Our study reveals that IaAO1 and IaAU1 might play a role in the biosynthesis of pentacyclic triterpenoid saponins in I. asprella and provides insights into the potential application of metabolic engineering to produce ursane-type triterpene glycosides.

3.
Front Plant Sci ; 8: 634, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503180

RESUMO

Native to Southern China, Ilex pubescens and Ilex asprella are frequently used in traditional Chinese medicine. Both of them produce a large variety of ursane-type triterpenoid saponins, which have been demonstrated to have different pharmacological effects. However, little is known about their biosynthesis. In this study, transcriptomic analysis of I. pubescens and comparison with its closely related specie I. asprella were carried out to identify potential genes involved in triterpenoid saponin biosynthesis. Through RNA sequencing (RNA-seq) and de novo transcriptome assembly of I. pubescens, a total of 68,688 UniGene clusters are obtained, of which 32,184 (46.86%) are successfully annotated by comparison with the sequences in major public databases (NCBI, Swiss-Prot, and KEGG). It includes 128 UniGenes related to triterpenoid backbone biosynthesis, 11 OSCs (oxidosqualene cyclases), 233 CYPs (cytochrome P450), and 269 UGTs (UDP-glycosyltransferases). By homology-based blast and phylogenetic analysis with well-characterized genes involved in triterpenoid saponin biosynthesis, 5 OSCs, 14 CYPs, and 1 UGT are further proposed as the most promising candidate genes. Transcriptomic comparison between two Ilex species using blastp and OrthoMCL method reveals high sequence similarity. All OSCs and UGTs as well as most CYPs are classified as orthologous genes, while only 5 CYPs in I. pubescens and 3 CYPs in I. asprella are species-specific. One of OSC candidates, named as IpAS1, was successfully cloned and expressed in Saccharomyces cerevisiae INVSc1. Analysis of the yeast extract by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) shows IpAS1 is a mixed amyrin synthase, producing α-amyrin and ß-amyrin at ratio of 5:1, which is similar to its ortholog IaAS1 from I. asprella. This study is the first exploration to profile the transcriptome of I. pubescens, the generated data and gene models will facilitate further molecular studies on the physiology and metabolism in this plant. By comparative transcriptomic analysis, a series of candidate genes involved in the biosynthetic pathway of triterpenoid saponins are identified, providing new insight into their biosynthesis at transcriptome level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA