Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27330, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495171

RESUMO

The green bean pods of Phaseolus vulgaris L. are traditionally used as a folk remedy for treating calcium oxalate kidney stones. The current research aimed to develop a syrup formulation containing green bean pod extract for anti-urolithiatic activity. The syrup was prepared using a simple blending method and optimized through a central composite design (CCD) with two independent variables: the ratio of pod juice (PJ) to sugar solution (SS) ranging from 1:0.5 to 1:1.5, and the percentage of CMC from 0.2% to 0.4% w/v. These variables were analyzed for their impact on viscosity (CP) and sedimentation percentage, helping to identify the best formulation out of 13 variants. The finalized formulation (F-opt) underwent assessment for physicochemical characteristics such as organoleptic properties, viscosity, density, sedimentation rate, and stability. Additionally, a microbiological assessment was performed utilizing the spread plate method. Further, it was evaluated for in vitro, ex vivo, and in vivo anti-urolithiatic activity in rat models for 28 days and compared with that of the reference standard (Cystone syrup). Additionally, acute toxicity was assessed in albino Swiss mice. Histopathological evaluations were then conducted on the kidneys of the Wistar rats that had been used for the in vivo studies, providing insight into the treatment effects on kidney tissue structure. The optimized formulation (F-opt) was a green, viscous, clear syrup with a pH of 5.8, a viscosity of 256.38 CP, a density of 1.31 g/ml, and a sedimentation rate of 0.69%. The optimized formulation was found to be stable, showing no significant changes in physicochemical and microbiological properties. The results of the in vitro, ex vivo, and in vivo anti-urolithiatic studies indicated that the optimized formulation effectively inhibited the aggregation of calcium oxalate. The acute toxicity studies revealed no mortality or adverse effects for both the optimized formulation and pure bean pod juice at a dose of 2000 mg/kg body weight. Histopathological examination revealed that rats treated with the optimized formulation exhibited a significant reduction in both the number and size of calcium oxalate deposits within various parts of the renal tubules. It can be concluded that the syrupy formulation of Phaseolus vulgaris L. green bean pod extract demonstrated significant anti-urolithiatic activity. This activity could be due to its diuretic properties and its ability to inhibit the formation of calcium oxalate crystals. However, limitations of the study included a lack of elucidation of the mechanism and limited generalizability of the findings.

2.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904003

RESUMO

Plants of the genus Tylophora have commonly been used in traditional medicine in various communities, especially in the tropical and subtropical regions of climatic zones. Of the nearly 300 species reported in the Tylophora genus, eight are primarily used in various forms to treat a variety of bodily disorders based on the symptoms. Certain plants from the genus have found use as anti-inflammatory, anti-tumor, anti-allergic, anti-microbial, hypoglycemic, hypolipidemic, anti-oxidant, smooth muscle relaxant, immunomodulatory, and anti-plasmodium agents, as well as free-radical scavengers. Pharmacologically, a few plant species from the genus have exhibited broad-spectrum anti-microbial and anti-cancer activity, which has been proven through experimental evaluations. Some of the plants in the genus have also helped in alcohol-induced anxiety amelioration and myocardial damage repair. The plants belonging to the genus have also shown diuretic, anti-asthmatic, and hepato-protective activities. Tylophora plants have afforded diverse structural bases for secondary metabolites, mainly belonging to phenanthroindolizidine alkaloids, which have been found to treat several diseases with promising pharmacological activity levels. This review encompasses information on various Tylophora species, their distribution, corresponding plant synonyms, and chemical diversity of the secondary metabolic phytochemicals as reported in the literature, together with their prominent biological activities.

3.
Drug Deliv ; 29(1): 2694-2704, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35975320

RESUMO

Diabetes mellitus is a life-threatening metabolic disease. At the moment, there is no effective treatment available to combat it. In this study, we aimed to develop berberine-loaded bilosomes (BER-BLS) to boost the oral bioavailability and therapeutic efficacy of berberine, a natural antidiabetic medication. The BER-BLS was fabricated using a thin-film hydration strategy and optimized using a central composite design (face-centered). The average vesicle size, entrapment efficiency, and surface charge of the optimized BER-BLS preparation were 196.5 nm, 89.7%, (-) 36.4 mV, respectively. In addition, it exhibited higher stability and better-sustained release of berberine than the berberine solution (BER-SOL). BER-BLS and BER-SOL were administered to streptozocin-induced diabetic rats. The optimized BER-BLS formulation had a significant hypoglycemic impact, with a maximum blood glucose decrease of 41%, whereas BER-SOL only reduced blood glucose by 19%. Furthermore, the pharmacological effect of oral BER-BLS and BER-SOL corresponded to 99.3% and 31.7%, respectively, when compared to subcutaneous insulin (1 IU). A pharmacokinetic analysis found a 6.4-fold rise in the relative bioavailability of berberine in BER-BLS when compared to BER-SOL at a dosage of 100 mg/kg body weight. Histopathological investigation revealed that BER-BLS is suitable for oral administration. Our data demonstrate that BLS is a potential nanocarrier for berberine administration, enhancing its oral bioavailability and antidiabetic activity.


Assuntos
Berberina , Diabetes Mellitus Experimental , Administração Oral , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Suplementos Nutricionais , Hipoglicemiantes/farmacologia , Tamanho da Partícula , Ratos
4.
Gels ; 8(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621548

RESUMO

Vitamin D deficiency distresses nearly 50% of the population globally and multiple studies have highlighted the association of Vitamin D with a number of clinical manifestations, including musculoskeletal, cardiovascular, cerebrovascular, and neurological disorders. In the current study, vitamin D oil-in-water (O/W) nanoemulsions were developed and incorporated in edible gummies to enhance bioavailability, stability, and patient compliance. The spontaneous emulsification method was employed to produce a nano-emulsion using corn oil with tween 20 and lecithin as emulsifiers. Optimization was carried out using pseudo-ternary phase diagrams and the average particle size and polydispersity index (PDI) of the optimized nanoemulsion were found to be 118.6 ± 4.3 nm and 0.11 ± 0.30, respectively. HPLC stability analysis demonstrated that the nano-emulsion prevented the degradation and it retained more than 97% of active vitamin D over 15 days compared to 94.5% in oil solution. Similar results were obtained over further storage analysis. Vitamin D gummies based on emulsion-based gelled matrices were then developed using gelatin as hydrocolloid and varying quantities of corn oil. Texture analysis revealed that gummies formulated with 10% corn oil had the optimum hardness of 3095.6 ± 201.7 g on the first day which remained consistent on day 45 with similar values of 3594.4 ± 210.6 g. Sensory evaluation by 19 judges using the nine-point hedonic scale highlighted that the taste and overall acceptance of formulated gummies did not change significantly (p > 0.05) over 45 days storage. This study suggested that nanoemulsions consistently prevent the environmental degradation of vitamin D, already known to offer protection in GI by providing sustained intestinal release and enhancing overall bioavailability. Soft chewable matrices were easy to chew and swallow, and they provided greater patient compliance.

5.
Plants (Basel) ; 11(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270176

RESUMO

The increase in the use of herbal medicines has led to the implementation of more stern regulations in terms of quality variation and standardization. As medicinal plants are prone to quality variation acquired due to differences in geographical origin, collection, storage, and processing, it is essential to ensure the quality, efficacy, and biological activity of medicinal plants. This study aims to standardize the widely used fruit, i.e., Prunus domestica Linn., using evaluation techniques (microscopic, macroscopic, and physicochemical analyses), advanced instrumental (HPLC, HPTLC, and GC-MS for phytochemical, aflatoxins, pesticides, and heavy metals), biological, and toxicological techniques (microbial load and antioxidant activities). The results revealed a 6-8 cm fruit with smooth surface, delicious odor, and acidic taste (macroscopy), thin-walled epidermis devoid of cuticle and any kind of excrescences with the existence of xylem and phloem (microscopy), LOD (15.46 ± 2.24%), moisture content (13.27 ± 1.75%), the high extractive value of 24.71 ± 4.94% in water:methanol (1:1; v/v) and with ash values in the allowed limits (physicochemical properties), and the presence of numerous phytochemical classes such as alkaloids, flavonoids, carbohydrates, glycosides, saponins, etc. (phytochemical screening). Furthermore, no heavy metals (Pb, Hg, Cd, Ar), pesticides, ad microbial limits were detected beyond the permissible limits specified, as determined with AAS, GC-MS analysis, and microbial tests. The HPTLC was developed to characterize a complete phytochemical behavior for the components present in P. domestica fruit extract. The parameters utilized with the method used and the results observed for the prunus herein may render this method an effective tool for quality evaluation, standardization, and quality control of P. domestica fruit in research, industries, and market available food products of prunus.

6.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209242

RESUMO

The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box-Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer-Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Extratos Vegetais/química , Rubia/química , Pele/efeitos dos fármacos , Óxido de Zinco/química , Animais , Anti-Infecciosos/química , Antioxidantes/química , Fenômenos Químicos , Química Farmacêutica , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Modelos Químicos , Ratos , Pele/metabolismo , Análise Espectral
7.
Drug Dev Ind Pharm ; 47(2): 215-224, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33317339

RESUMO

There are many synthetic drugs in literature have been utilized in healing of the wounds although the natural product specially antioxidants can offer similar if not better biological activity in that regard. Genus Sophora is well known to contain flavonoids and phenolic compounds which have antioxidant and inflammatory effects. So, the aim of the current study was to develop and evaluate chitosan/gelatin based Sophora gibbosa extract-loaded microemulsion as wound dressing. Sophora gibbosa extract (SGE) contained 16 major compounds which have reasonable antioxidant activity. The developed microemulsion showed that Tween 80 produced significant (p < 0.05) lower particle size than Pluronic F127 at the same SGE concentration whereas high concentration of extract results in large particle size. Thermodynamic stability studies showed that using higher concentration of the extract produced less stable formulations. The selected formulation was impregnated in the dressing base (chitosan/gelatin; 2:1 w/w ratio) which exhibited more water absorption. In vivo evaluation revealed that the dressing displayed superior wound repair compared to the control in terms histological examination and determination of alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA). Thus, SGE-loaded microemulsion-impregnated gelatin/chitosan could be a potential candidate for the wound healing.


Assuntos
Quitosana , Extratos Vegetais/química , Sophora , Bandagens , Gelatina , Extratos Vegetais/isolamento & purificação , Cicatrização
8.
Curr Drug Metab ; 21(9): 661-673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32445453

RESUMO

Herbal medicines are being used since ancient times and are an important part of the alternative and traditional medicinal system. In recent decades, scientists are embracing herbal medicines based on the fact that a number of drugs that are currently in use are derived directly or indirectly from plant sources. Moreover, herbal drugs have lesser side effects, albeit are potentially strong therapeutic agents. The herbal medicine market is estimated to be around US $62 billion globally. Herbal medicine has gained widespread acceptance due to its low toxicity, low cost, ease of accessibility and efficacy in treating difficult diseases. Safety and efficacy are another important factors in the commercialization process of herbal medicines. Nanotechnology has been shown to be potentially effective in improving the bioactivity and bioavailability of herbal medicines. Development of nano-phytomedicines (or by reducing the size of phytomedicine), attaching polymers with phytomedicines and modifying the surface properties of herbal drugs, have increased the solubility, permeability and eventually the bioavailability of herbal formulations. Novel formulations such as niosomes, liposomes, nanospheres, phytosomes etc., can be exploited in this area. This article reviews herbal medicines, which have prominent activity in the Central Nervous System (CNS) disorders and reported nano-phytomedicines based delivery systems.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Fitoterapia , Animais , Humanos , Nanomedicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA