Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887253

RESUMO

(1) Background: A possible solution to antimicrobial resistance (AMR) is synergism with plants like Artemisia brevifolia Wall. ex DC. (2) Methods: Phytochemical quantification of extracts (n-hexane (NH), ethyl acetate (EA), methanol (M), and aqueous (Aq)) was performed using RP-HPLC and chromogenic assays. Extracts were screened against resistant clinical isolates via disc diffusion, broth dilution, the checkerboard method, time-kill, and protein quantification assays. (3) Results: M extract had the maximum phenolic (15.98 ± 0.1 µg GAE/mgE) and flavonoid contents (9.93 ± 0.5 µg QE/mgE). RP-HPLC displayed the maximum polyphenols in the M extract. Secondary metabolite determination showed M extract to have the highest glycosides, alkaloids, and tannins. Preliminary resistance profiling indicated that selected isolates were resistant to cefixime (MIC 20-40 µg/mL). Extracts showed moderate antibacterial activity (MIC 60-100 µg/mL). The checkerboard method revealed a total synergy between EA extract and cefixime with 10-fold reductions in cefixime dose against resistant P. aeruginosa and MRSA. Moreover, A. brevifolia extracts potentiated the antibacterial effect of cefixime after 6 and 9 h. The synergistic combination was non- to slightly hemolytic and could inhibit bacterial protein in addition to cefixime disrupting the cell wall, thus making it difficult for bacteria to survive. (4) Conclusion: A. brevifolia in combination with cefixime has the potential to inhibit AMR.

2.
Fitoterapia ; 170: 105628, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517557

RESUMO

Crude extracts prepared from aerial parts and nut galls of Quercus floribunda Lindl. Ex. A. Camus were evaluated for phytochemical screening, in vitro antioxidant, and in vivo analgesic, anti-inflammatory and antipyretic activities. Various solvents including methanol (M), acetone (A), distilled water (DW), distilled water + methanol (DWM) were used for extraction. Highest total phenolic (66.9 ± 0.05 µg GAE/mgE) and flavonoid content (38.4 ± 0.72 µg QE/mgE) were measured in QFAA extract by colorimetric methods. Cumulative maximum concentrations of polyphenols were quantified in QFMG, QFAA, and QFMA extracts i.e. 19.036, 15. 574 and 11.647 µg/mg of extract by RP-HPLC analysis. From aerial parts extracts, apentacyclic tritepenoid, glutinol was isolated using column chromatography techniques and structure was elucidated using spectroscopic techniques. QFDWMA (205.5 ± 0.56 µg AAE/mg of extract) showed highest total reducing power while highest total antioxidant capacity (207.1 ± 0.49 AAE/mg of extract) and free radical scavenging potential (96.1 ± 0.42%) were observed in QFAA extract. QFAA extract showed significant (p ≤ 0.001) analgesic potential in different pain models i.e. hot plate method, cold plate method, Haffner's tail clip method and acetic acid induced writhing assay having 50.20%, 62.07%, 57.26% and 70.49% analgesia respectively at 300 mg/kg. QFAA extract showed maximum anti-inflammatory activity in croton oil induced edema (68.83%) and in carrageenan induced paw edema models (72.32%) at 300 mg/kg concentration. QFAA extract markedly reduced the rectal temperature at 300 mg/kg concentration, in brewer's yeast induced pyrexia model. Detailed investigations can be executed in future to determine the molecular mechanisms of these pharmacological attributes.


Assuntos
Quercus , Extratos Vegetais/química , Metanol , Antioxidantes , Estrutura Molecular , Anti-Inflamatórios , Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Água/efeitos adversos
3.
Oxid Med Cell Longev ; 2023: 5648837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151604

RESUMO

Materials and Methods: The extract library (n-hexane (NH), ethyl acetate (EA), methanol (M), distilled water (DW), and combined extract (CE)) was standardized using in vitro phytochemical, antioxidant, and α-amylase inhibition assays, after which the protective effect of selected "hit," i.e., CE against metabolic syndrome, was determined in vivo, using rats fed a high-fat diet supplemented with additional cholesterol administration. CE was administered to Sprague Dawley rats in high dose as 100 mg/kg in carboxymethyl cellulose (CMC) (1 ml; 0.75% in DW) and low-dose group as 50 mg/kg in CMC (0.5 ml; 0.75% in DW). After 10 weeks, the effects of CE on insulin resistance, lipid metabolism, nonalcoholic fatty liver disease (NAFLD), oxidative stress, and genotoxicity were assessed through histological, biochemical, and hematological investigations. Results: Phytochemical analysis including RP-HPLC analysis of the extracts showed that flavonoids and phenolics (myricetin, kaempferol, and apigenin), previously known to be effective against obesity and diabetes, are present in the extracts. Antioxidant studies revealed that the plant possesses a highly significant (p < 0.05) concentration of antioxidants. Satisfactory α-amylase inhibitory activity was also observed in in vitro experiments. In vivo studies showed that CE-administered animals had significantly (p < 0.05) lower weight gain and smaller adipocytes than the control group. Moreover, CE resisted any significant (p < 0.05) change in the organ weights. Analogous to findings from its traditional use, the plant extract had a positive modulatory effect on insulin resistance and hyperglycemia. The study also indicated that CE resisted high-fat diet-induced disturbance in lipid profile and countered any pathological changes in liver enzymes caused by fat-infused diet. Furthermore, a study on endogenous antioxidant levels indicated that CE was effective in maintaining catalase and peroxidase levels within the normal range and resisted the effects of lipid peroxidation of thiobarbituric acid reactive substances. Conclusion: In principle, the current study's findings scientifically validate the implication of T. linearis in metabolic syndrome and recommend further studies on molecular insights of the observed therapeutic activity.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Ratos , Animais , Antioxidantes/metabolismo , Ratos Sprague-Dawley , Síndrome Metabólica/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/metabolismo , alfa-Amilases/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA