Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050414

RESUMO

It is unclear how skeletal muscle metabolism and mitochondrial function adapt to long duration bed rest and whether changes can be prevented by nutritional intervention. The present study aimed (1) to assess the effect of prolonged bed rest on skeletal muscle mitochondrial function and dynamics and (2) to determine whether micronutrient supplementation would mitigate the adverse metabolic effect of bed rest. Participants were maintained in energy balance throughout 60 days of bed rest with micronutrient supplementation (INT) (body mass index: 23.747 ± 1.877 kg m-2 ; 34.80 ± 7.451 years; n = 10) or without (control) (body mass index: 24.087 ± 2.088 kg m-2 ; 33.50 ± 8.541 years; n = 10). Indirect calorimetry and dual-energy x-ray absorptiometry were used for measures of energy expenditure, exercise capacity and body composition. Mitochondrial respiration was determined by high-resolution respirometry in permeabilized muscle fibre bundles from vastus lateralis biopsies. Protein and mRNA analysis further examined the metabolic changes relating to regulators of mitochondrial dynamics induced by bed rest. INT was not sufficient in preserving whole body metabolic changes conducive of a decrease in body mass, fat-free mass and exercise capacity within both groups. Mitochondrial respiration, OPA1 and Drp1 protein expression decreased with bed rest, with an increase pDrp1s616 . This reduction in mitochondrial respiration was explained through an observed decrease in mitochondrial content (mtDNA:nDNA). Changes in regulators of mitochondrial dynamics indicate an increase in mitochondrial fission driven by a decrease in inner mitochondrial membrane fusion (OPA1) and increased pDrp1s616 . KEY POINTS: Sixty days of -6° head down tilt bed rest leads to significant changes in body composition, exercise capacity and whole-body substrate metabolism. Micronutrient supplementation throughout bed rest did not preserve whole body metabolic changes. Bed rest results in a decrease in skeletal muscle mitochondrial respiratory capacity, mainly as a result of an observed decrease in mitochondrial content. Prolonged bed rest ensues changes in key regulators of mitochondrial dynamics. OPA1 and Drp1 are significantly reduced, with an increase in pDrp1s616 following bed rest indicative of an increase in mitochondrial fission. Given the reduction in mitochondrial content following 60 days of bed rest, the maintenance of regulators of mitophagy in line with the increase in regulators of mitochondrial fission may act to maintain mitochondrial respiration to meet energy demands.

2.
J Proteome Res ; 19(8): 3438-3451, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609523

RESUMO

Muscle atrophy is a deleterious consequence of physical inactivity and is associated with increased morbidity and mortality. The aim of this study was to decipher the mechanisms involved in disuse muscle atrophy in eight healthy men using a 21 day bed rest with a cross-over design (control, with resistive vibration exercise (RVE), or RVE combined with whey protein supplementation and an alkaline salt (NEX)). The main physiological findings show a significant reduction in whole-body fat-free mass (CON -4.1%, RVE -4.3%, NEX -2.7%, p < 0.05), maximal oxygen consumption (CON -20.5%, RVE -6.46%, NEX -7.9%, p < 0.05), and maximal voluntary contraction (CON -15%, RVE -12%, and NEX -9.5%, p < 0.05) and a reduction in mitochondrial enzyme activity (CON -30.7%, RVE -31.3%, NEX -17%, p < 0.05). The benefits of nutrition and exercise countermeasure were evident with an increase in leg lean mass (CON -1.7%, RVE +8.9%, NEX +15%, p < 0.05). Changes to the vastus lateralis muscle proteome were characterized using mass spectrometry-based label-free quantitative proteomics, the findings of which suggest alterations to cell metabolism, mitochondrial metabolism, protein synthesis, and degradation pathways during bed rest. The observed changes were partially mitigated during RVE, but there were no significant pathway changes during the NEX trial. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006882. In conclusion, resistive vibration exercise, when combined with whey/alkalizing salt supplementation, could be an effective strategy to prevent skeletal muscle protein changes, muscle atrophy, and insulin sensitivity during medium duration bed rest.


Assuntos
Repouso em Cama , Vibração , Repouso em Cama/efeitos adversos , Estudos Cross-Over , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético , Proteoma , Soro do Leite , Proteínas do Soro do Leite
3.
J Appl Physiol (1985) ; 126(1): 88-101, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30284519

RESUMO

Physical inactivity and sedentary behaviors are independent risk factors for numerous diseases. We examined the ability of a nutrient cocktail composed of polyphenols, omega-3 fatty acids, vitamin E, and selenium to prevent the expected metabolic alterations induced by physical inactivity and sedentary behaviors. Healthy trained men ( n = 20) (averaging ∼14,000 steps/day and engaged in sports) were randomly divided into a control group (no supplementation) and a cocktail group for a 20-day free-living intervention during which they stopped exercise and decreased their daily steps (averaging ∼3,000 steps/day). During the last 10 days, metabolic changes were further triggered by fructose overfeeding. On days 0, 10, and 20, body composition (dual energy X-ray), blood chemistry, glucose tolerance [oral glucose tolerance test (OGTT)], and substrate oxidation (indirect calorimetry) were measured. OGTT included 1% fructose labeled with (U-13C) fructose to assess liver de novo lipogenesis. Histological changes and related cellular markers were assessed from muscle biopsies collected on days 0 and 20. While the cocktail did not prevent the decrease in insulin sensitivity and its muscular correlates induced by the intervention, it fully prevented the hypertriglyceridemia, the drop in fasting HDL and total fat oxidation, and the increase in de novo lipogenesis. The cocktail further prevented the decrease in the type-IIa muscle fiber cross-sectional area and was associated with lower protein ubiquitination content. The circulating antioxidant capacity was improved by the cocktail following the OGTT. In conclusion, a cocktail of nutrient compounds from dietary origin protects against the alterations in lipid metabolism induced by physical inactivity and fructose overfeeding. NEW & NOTEWORTHY This is the first study to test the efficacy of a novel dietary nutrient cocktail on the metabolic and physiological changes occurring during 20 days of physical inactivity along with fructose overfeeding. The main findings of this study are that 1) reduction in daily steps leads to decreased insulin sensitivity and total fat oxidation, resulting in hyperlipemia and increased de novo lipogenesis and 2) a cocktail supplement prevents the alterations on lipid metabolism.


Assuntos
Suplementos Nutricionais , Resistência à Insulina , Metabolismo dos Lipídeos , Atrofia Muscular/prevenção & controle , Comportamento Sedentário , Antioxidantes/metabolismo , Frutose , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
4.
FASEB J ; 25(10): 3646-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715682

RESUMO

Long-term spaceflight induces hypokinesia and hypodynamia, which, along microgravity per se, result in a number of significant physiological alterations, such as muscle atrophy, force reduction, insulin resistance, substrate use shift from fats to carbohydrates, and bone loss. Each of these adaptations could turn to serious health deterioration during the long-term spaceflight needed for planetary exploration. We hypothesized that resveratrol (RES), a natural polyphenol, could be used as a nutritional countermeasure to prevent muscle metabolic and bone adaptations to 15 d of rat hindlimb unloading. RES treatment maintained a net protein balance, soleus muscle mass, and soleus muscle maximal force contraction. RES also fully maintained soleus mitochondrial capacity to oxidize palmitoyl-carnitine and reversed the decrease of the glutathione vs. glutathione disulfide ratio, a biomarker of oxidative stress. At the molecular level, the protein content of Sirt-1 and COXIV in soleus muscle was also preserved. RES further protected whole-body insulin sensitivity and lipid trafficking and oxidation, and this was likely associated with the maintained expression of FAT/CD36, CPT-1, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in muscle. Finally, chronic RES supplementation maintained the bone mineral density and strength of the femur. For the first time, we report a simple countermeasure that prevents the deleterious adaptations of the major physiological functions affected by mechanical unloading. RES could thus be envisaged as a nutritional countermeasure for spaceflight but remains to be tested in humans.


Assuntos
Inibidores Enzimáticos/farmacologia , Elevação dos Membros Posteriores , Condicionamento Físico Animal , Estilbenos/farmacologia , Tecido Adiposo/metabolismo , Animais , Disponibilidade Biológica , Biomarcadores/sangue , Regulação da Temperatura Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Teste de Tolerância a Glucose , Inflamação/metabolismo , Resistência à Insulina , Masculino , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Ratos , Ratos Wistar , Resveratrol , Estilbenos/metabolismo , Estilbenos/farmacocinética , Estilbenos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA