Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 671, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635434

RESUMO

Fagonia cretica L. is a tropical plant of family Zygophyllaceae with wide range of medicinally important secondary metabolites. The low cellular uptake of the polar compounds in the extract of the plant limits its biological application. In present study efficacy of F. cretica modified bioactive nano-formulations for in vitro modulation of TRAIL mediated extrinsic apoptotic pathway as cancer therapy was investigated. F. cretica methanolic extracts were formulated at nano-scale for green synthesis of silver nanoparticles, albumin conjugation and liposomes encapsulation to enhance targeted bioactivity against cancer. Physical characterization of the synthesized nanoparticles was done by SEM, EDX and Zeta potential analyzer. In vitro cell viability assay MTT was done for MCF-7, Hep-2, HUH-7 and HCEC cell lines. Relative expression variation of the apoptotic pathway-associated genes was done by qRT-PCR. SEM revealed spherical shape of 56.62 ± 8.04, 143 ± 11.54 and 83.36 ± 38.73 nm size and zeta potential - 18.6, - 15.5 and - 18.3 mV for liposomes, silver and albumin nanoparticles. Silver nanoparticles showed highest anticancer activity in vitro than albumin and liposomes nanoparticles with IC50 0.101 ± 0.004, 0.177 ± 0.03 and 0.434 ± 0.022 mg/mL in MCF-7, Hep-2 and HUH-7 respectively. F. cretica albumin and silver nanoparticles upregulated the in vitro TRAIL, DR4, DR5 and FADD gene expression at statistically significant levels in Hep-2 cell lines. Nano-formulations of F. cretica proved therapeutically important biomolecules in vitro. The hypothesized modulation of extrinsic apoptosis pathway genes through the plant nanoparticles proved novel medicinal options for effective treatment of cancer and enhancing the bioavailability of the active plant metabolites.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias , Extratos Vegetais , Zygophyllaceae , Humanos , Antineoplásicos/farmacologia , Apoptose , Lipossomos/farmacologia , Extratos Vegetais/farmacologia , Prata/farmacologia , Linhagem Celular Tumoral
2.
GM Crops Food ; 13(1): 97-111, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35652435

RESUMO

Potato virus Y (PVY) is a deadly environmental constraint that damages productivity of potato (Solanum tuberosum) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVYN, PVYO, and PVYNTN. Multiple genes PI, HC-Pro, P3, Cl1, Cl2, and VPg genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.


Assuntos
Potyvirus , Solanum tuberosum , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , Potyvirus/genética , Solanum tuberosum/genética , Pequeno RNA não Traduzido
3.
Mol Biol Rep ; 49(6): 4171-4178, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35301659

RESUMO

BACKGROUND: Transforming growth factor beta (TGF-ß) superfamily has key role in cell proliferation which leads to tumor promoting activities at metastatic stage of cancer. Inhibition of transforming growth factor beta receptor (TGFßR) signaling pathway can provide better therapeutic strategy to control cancer. Natural products are best known for their safety, less toxic nature, antioxidant characteristics making them a promising candidate to inhibit TGFßR signaling pathway. METHODS AND RESULTS: Crude methanolic extracts (CMEs) of 16 selected plants were prepared by using maceration method and subjected to phytochemical assays for identification of major phytometabolites particularly cancer chemopreventive antioxidant constituents. Total flavonoid content of all plants CME was > 0.6 mg/ml exhibiting the Cichorium intybus contains comparatively highest amount of total flavonoid content (0.53 mg/ml). Scanvenging activity of all plants was determined having IC50 ranges between 2 and 88 (µg/ml) while Moringa oleifera revealed the maximum scavenging activity (IC50 2.03 µg/ml). Comparative cytotoxicity of plant extracts was evaluated in HUH and MCF-7 cell lines using 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) colorimetric assay. The nine active plant extracts i.e. Fagonia cretica, Argemone Mexicana, Rubus fruticosus, M. oleifera, Punica granatum, Cichorium intybus, Xanthium strumarium, Carissa opaca, Cyperus rotundus were identified based on their high antiproliferative activity > 50% against cancer cell lines and subjected to relative expression studies. Modulation of TGFß signaling molecules (i.e.TGFßR1, 2 & 3, SMAD3, SMAD5) and ubiquitous proteins i.e. SMURF1 and SMURF2 genetic expression by potent extracts was determined by RT-PCR using GAPDH (housekeeping gene) as gene of reference. CONCLUSIONS: This present study revealed that CME of Fagonia cretica and Argemone mexicana significantly inhibit TGF beta mediated signaling cascade by downregulating the gene expression fold change > 1 of TGFßR 1, 2 & 3 and receptor associated complex protein SMAD3 as compared to control.


Assuntos
Neoplasias , Receptores de Fatores de Crescimento Transformadores beta , Antioxidantes/farmacologia , Flavonoides/farmacologia , Humanos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA