Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837246

RESUMO

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Assuntos
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiologia , Lupinus/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo
2.
Sci Rep ; 9(1): 11252, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375707

RESUMO

Nanomaterials are widely used in medical and pharmaceutical fields, but their application in plant nutrition is at its infancy. Phosphorous (P) and iron (Fe) are essential mineral nutrients limiting in a wide range of conditions the yield of crops. Phosphate and Fe fertilizers to-date on the market display low efficiency (P fertilizers) and low persistence in soil (Fe fertilizers) and negatively affect the environment. In the tentative to overcome these problems, we developed a continuous industrially scalable method to produce FePO4 NPs based on the rapid mixing of salt solutions in a mixing chamber. The process, that included the addition of citrate as capping agent allowed to obtain a stable suspension of NPs over the time. The NPs were tested for their effectiveness as P and Fe sources on two hydroponically grown crop species (cucumber and maize) comparing their effects to those exerted by non-nanometric FePO4 (bulk FePO4). The results showed that FePO4 NPs improved the availability of P and Fe, if compared to the non-nano counterpart, as demonstrated by leaf SPAD indexes, fresh biomasses and P and Fe contents in tissues. The results open a new avenue in the application of nanosized material in the field of plant nutrition and fertilization.


Assuntos
Cucumis sativus/metabolismo , Fertilizantes , Nanopartículas/metabolismo , Zea mays/metabolismo , Agricultura/métodos , Técnicas de Química Sintética/métodos , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/metabolismo , Nanopartículas/química , Nutrientes/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fósforo/metabolismo
3.
Front Plant Sci ; 7: 845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446099

RESUMO

To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.

4.
Plant Cell ; 24(9): 3489-505, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22948079

RESUMO

We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent leaves. Together, these samples expressed ∼91% of the predicted grapevine genes. Pollen and senescent leaves had unique transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual species and may be a defining characteristic of perennial woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Transcriptoma , Vitis/genética , Cromossomos de Plantas/genética , Análise por Conglomerados , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica , Marcadores Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Especificidade da Espécie , Vitis/crescimento & desenvolvimento , Vitis/fisiologia
5.
J Proteome Res ; 10(2): 429-46, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20945943

RESUMO

The practice of postharvest withering is commonly used to correct quality traits and sugar concentration of high quality wines. To date, changes in the metabolome during the berry maturation process have been well documented; however, the biological events which occur at the protein level have yet to be fully investigated. To gain insight into the postharvest withering process, we studied the protein expression profiles of grape (Corvina variety) berry development focusing on withering utilizing a two-dimensional differential in gel electrophoresis (2D-DIGE) proteomics approach. Comparative analysis revealed changes in the abundance of numerous soluble proteins during the maturation and withering processes. On a total of 870 detected spots, 90 proteins were differentially expressed during berry ripening/withering and 72 were identified by MS/MS analysis. The majority of these proteins were related to stress and defense activity (30%), energy and primary metabolism (25%), cytoskeleton remodelling (7%), and secondary metabolism (5%). Moreover, this study demonstrates an active modulation of metabolic pathways throughout the slow dehydration process, including de novo protein synthesis in response to the stress condition and further evolution of physiological processes originated during ripening. These data represent an important insight into the withering process in terms of both Vitis germplasm characterization and knowledge which can assist quality improvement.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Vitis/química , Sequência de Aminoácidos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Análise Multivariada , Odorantes , Extratos Vegetais/química , Proteínas de Plantas/análise , Proteínas de Plantas/classificação , Proteoma/análise , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA