Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Enferm. infecc. microbiol. clín. (Ed. impr.) ; 35(8): 499-504, oct. 2017. graf, tab
Artigo em Inglês | IBECS | ID: ibc-167837

RESUMO

Introduction: Antimicrobial resistance in Enterobacteriaceae is increasing worldwide and is making treating infections caused by multidrug-resistant Enterobacteriaceae a challenge. The use of Beta -lactam agents is compromised by microorganisms harboring extended-spectrum Beta -lactamases (ESBLs) and other mechanisms of resistance. Avibactam is a non Beta -lactam agent that inhibits clinically relevant Beta -lactamases, such as ESBL and AmpC. The ceftazidime-avibactam combination (CAZ-AVI) was recently approved for use in certain complicated infections, and may provide a therapeutic alternative for infections caused by these microorganisms. Methods: The in vitro activity of CAZ and CAZ-AVI (AVI at a fixed concentration of 4mg/L) was tested against 250 clinical isolates of Enterobacteriaceae using broth microdilution. EUCAST breakpoint criteria were used for CAZ, and FDA criteria for CAZ-AVI. Clinical isolates included bacteria producing extended-spectrum Beta -lactamases (ESBLs) and acquired AmpC Beta -lactamases (AACBLs). Porin loss in Klebsiella pneumoniae was also evaluated. Results: The combination of AVI with CAZ displayed excellent activity against clinical isolates of ESBL-producing Escherichia coli and Klebsiella pneumoniae, rendering all the ceftazidime-resistant isolates susceptible to ceftazidime. CAZ-AVI retained activity against porin-deficient isolates of K. pneumoniae producing ESBLs, AACBLs, or both, although MIC values were higher compared to porin-expressing isolates. CAZ-AVI rendered all the ceftazidime-resistant AACBL-producing Enterobacteriaceae tested susceptible to ceftazidime. Conclusion: CAZ-AVI showed potent in vitro activity against clinical isolates of Enterobacteriaceaeproducing ESBLs and/or AACBLs, including K. pneumoniae with loss of porins (AU)


Introducción: La resistencia antibiótica en enterobacterias está en aumento y el tratamiento de infecciones producidas por enterobacterias multirresistentes supone un reto terapéutico. El uso de betalactámicos se afecta con la producción de betalactamasas de espectro extendido (BLEE) y otros mecanismos de resistencia. Avibactam es un compuesto no betalactámico que inhibe betalactamasas como BLEE o AmpC. La combinación ceftazidima-avibactam (CAZ-AVI) ha sido aprobada recientemente para el tratamiento de infecciones complicadas y puede ser una alternativa terapéutica en estas infecciones. Métodos: La actividad in vitro de CAZ y CAZ-AVI (AVI, concentración fija de 4mg/mL) fue determinada en 250 aislamientos clínicos de enterobacterias mediante microdilución en caldo. Los puntos de corte de EUCAST fueron utilizados para CAZ, y los criterios de FDA se utilizaron para CAZ-AVI. Las enterobacterias estudiadas producían BLEE y/o AmpC adquiridas (BLAA). El papel de la pérdida de porinas en Klebsiella pneumoniae también fue evaluado. Resultados: CAZ-AVI demostró una excelente actividad en Escherichia coli y Klebsiella pneumoniaeproductoras de BLEE, devolviendo la sensibilidad a CAZ en todos los aislamientos resistentes a CAZ. CAZ-AVI mantuvo su actividad en aislamientos de K. pneumoniae deficientes en porinas productoras de BLEE y/o BLAA, aunque los valores de CMI fueron más altos comparados con las cepas que expresaban porinas. En todas las enterobacterias resistentes a ceftazidima productoras de BLAA analizadas en este estudio CAZ-AVI devolvió la sensibilidad a ceftazidima. Conclusión: CAZ-AVI demostró una potente actividad in vitro en aislamientos clínicos de enterobacterias productoras de BLEE y/o BLAA, incluyendo K. pneumoniae con pérdida de porinas (AU)


Assuntos
Resistência a Múltiplos Medicamentos , Enterobacteriaceae , beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Técnicas In Vitro/métodos , Porinas/isolamento & purificação , Klebsiella pneumoniae , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana/instrumentação
2.
J Antimicrob Chemother ; 70(11): 3004-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26260130

RESUMO

OBJECTIVES: The main objective of this study was to investigate the relationship among the in vivo acquisition of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates, the underlying molecular mechanisms and previous exposure to antipseudomonal agents. METHODS: PFGE was used to study the molecular relatedness of the strains. The MICs of ceftazidime, cefepime, piperacillin/tazobactam, imipenem, meropenem, ciprofloxacin and amikacin were determined. Outer membrane protein profiles were assessed to study OprD expression. RT-PCR was performed to analyse ampC, mexB, mexD, mexF and mexY expression. The presence of mutations was analysed through DNA sequencing. RESULTS: We collected 17 clonally related paired isolates [including first positive samples (A) and those with MICs increased ≥4-fold (B)]. Most B isolates with increased MICs of imipenem, meropenem and ceftazidime became resistant to these drugs. The most prevalent resistance mechanisms detected were OprD loss (65%), mexB overexpression (53%), ampC derepression (29%), quinolone target gene mutations (24%) and increased mexY expression (24%). Five (29%) B isolates developed multidrug resistance. Meropenem was the most frequently (71%) received treatment, explaining the high prevalence of oprD mutations and likely mexB overexpression. Previous exposure to ceftazidime showed a higher impact on selection of increased MICs than previous exposure to piperacillin/tazobactam. CONCLUSIONS: Stepwise acquisition of resistance has a critical impact on the resistance phenotypes of P. aeruginosa, leading to a complex scenario for finding effective antimicrobial regimens. In the clinical setting, meropenem seems to be the most frequent driver of multidrug resistance development, while piperacillin/tazobactam, in contrast to ceftazidime, seems to be the ß-lactam least associated with the selection of resistance mechanisms.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Evolução Molecular , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Eletroforese em Gel de Campo Pulsado , Perfilação da Expressão Gênica , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Tipagem Molecular , Pseudomonas aeruginosa/classificação , Reação em Cadeia da Polimerase em Tempo Real , beta-Lactamases/genética
3.
Antimicrob Agents Chemother ; 54(3): 1213-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20086158

RESUMO

CXA-101, previously designated FR264205, is a new antipseudomonal cephalosporin. We evaluated the activity of CXA-101 against a highly challenging collection of beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit (ICU) patients. The in vitro mutants investigated included strains with multiple combinations of mutations leading to several degrees of AmpC overexpression (ampD, ampDh2, ampDh3, and dacB [PBP4]) and porin loss (oprD). CXA-101 remained active against even the AmpD-PBP4 double mutant (MIC = 2 microg/ml), which shows extremely high levels of AmpC expression. Indeed, this mutant showed high-level resistance to all tested beta-lactams, except carbapenems, including piperacillin-tazobactam (PTZ), aztreonam (ATM), ceftazidime (CAZ), and cefepime (FEP), a cephalosporin considered to be relatively stable against hydrolysis by AmpC. Moreover, CXA-101 was the only beta-lactam tested (including the carbapenems imipenem [IMP] and meropenem [MER]) that remained fully active against the OprD-AmpD and OprD-PBP4 double mutants (MIC = 0.5 microg/ml). Additionally, we tested a collection of 50 sequential isolates that were susceptible or resistant to penicillicins, cephalosporins, carbapenems, or fluoroquinolones that emerged during treatment of ICU patients. All of the mutants resistant to CAZ, FEP, PTZ, IMP, MER, or ciprofloxacin showed relatively low CXA-101 MICs (range, 0.12 to 4 microg/ml; mean, 1 to 2 microg/ml). CXA-101 MICs of pan-beta-lactam-resistant strains ranged from 1 to 4 microg/ml (mean, 2.5 microg/ml). As described for the in vitro mutants, CXA-101 retained activity against the natural AmpD-PBP4 double mutants, even when these exhibited additional overexpression of the MexAB-OprM efflux pump. Therefore, clinical trials are needed to evaluate the usefulness of CXA-101 for the treatment of P. aeruginosa nosocomial infections, particularly those caused by multidrug-resistant isolates that emerge during antipseudomonal treatments.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Unidades de Terapia Intensiva , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica/genética , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Humanos , Testes de Sensibilidade Microbiana/normas , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
J Struct Biol ; 169(2): 226-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19854274

RESUMO

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85A. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP.


Assuntos
Araceae/enzimologia , Modelos Moleculares , Peroxidase/química , Conformação Proteica , Sequência de Aminoácidos , Sequência de Bases , Cristalização , Primers do DNA/genética , DNA Complementar/genética , Glicosilação , Cinética , Dados de Sequência Molecular , Peroxidase/genética , Peroxidase/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA