Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Anal Chem ; 53(2): 339-359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34328385

RESUMO

For thousands of years, medicinal plants (MPs) have been one of the main sources of drugs worldwide. However, recently, heavy metal pollution has seriously affected the quality and safety of MPs. Consuming MPs polluted by heavy metals such as Pb, Hg, and Cu significantly threaten the health of consumers. To manage this situation, the levels of heavy metals in MPs must be controlled. In recent years, this field has attracted significant attention, but few researchers have systematically summarized various analytical methods. Therefore, it is necessary to investigate methods that can accurately and effectively detect the amount of heavy metals in MPs. Herein, some important analytical methods used to detect heavy metals in MPs and their applications have been introduced and summarized in detail. These include atomic absorption spectrometry, atomic fluorescence spectrometry, inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, neutron activation analysis, and anodic stripping voltammetry. The characteristics of these methods were subsequently compared and analyzed. In addition, high-performance liquid chromatography, ultraviolet spectrophotometry, and disposable electrochemical sensors have also been used for heavy metal detection in MPs. To elucidate the systematic and comprehensive information, these methods have also been briefly introduced in this review.


Assuntos
Metais Pesados , Plantas Medicinais , Plantas Medicinais/química , Metais Pesados/análise , Espectrofotometria Atômica/métodos , Espectrometria de Fluorescência
2.
Chin Herb Med ; 14(4): 543-553, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36405060

RESUMO

Objective: Saposhnikoviae Radix (Fangfeng in Chinese), the roots of Saposhnikovia divaricata, lacks commodity specification and grade standardization in the current market. This study investigated the existing specifications and grades of Saposhnikoviae Radix to provide a standardized scientific reference for its market use. Methods: Based on a textual research of Chinese herbal medicine from the Han Dynasty to the present, medicinal materials of different specifications and grades obtained from Saposhnikoviae Radix in the main producing areas of China were collected and the markets for these materials were investigated. Field investigations were performed in the major producing areas such as Northeast China, Hebei Province, and Inner Mongolia. Four major Chinese herbal medicine markets in China were investigated. Sensory indices were used to categorize the two specifications (wild and cultivated) according to the shape, color, texture, and cross-section. High-performance liquid chromatography was performed to determine the active components. Vernier calipers and measuring tape were used to measure the diameter and length, respectively, of 41 samples. Using Excel and the R Language software, cluster analysis and descriptive statistical analysis were performed to assist in the application of new specifications and grades based on physical characteristics, pharmacological activity, and chemical composition. Results: The two specifications (wild and cultivated) of Saposhnikoviae Radix were divided into three grades each based on the length and diameter. Prim-O-glucosylcimifugin, 5-O-methylvisamminoside, and the length of Saposhnikoviae Radix can be used as a basis for classifying the commodity specifications and grades. The specifications and grade standards of Saposhnikoviae Radix were established based on the following eight aspects: shape, surface characteristics, texture, cross section, taste, prim-O-glucosylcimifugin content, 5-O-methylvisamminoside content and length. Conclusion: The formulation of this standard stipulates the commodity specification level of Saposhnikoviae Radix. It is also suitable for the evaluation of commodity specifications in the process of production, circulation and use of Saposhnikoviae Radix.

3.
Front Plant Sci ; 13: 949743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061795

RESUMO

Artemisia argyi and Artemisia indica are edible medicinal plants belonging to the genus Artemisia in the Asteraceae. There are many similarities in their morphology, traditional curative effect, and modern pharmacological treatment. In this study, we built distribution maps of A. argyi and A. indica in China and a phylogenetic tree of common medicinal plants in Asteraceae. Then, we verified the chemical composition changes of A. argyi and A. indica via their metabolome. Traditional efficacy and modern pharmacological action were verified by network pharmacology and in vitro using RAW264.7 cells. The results showed that A. argyi and A. indica are widely distributed in China, and they shared pharmaphylogeny, which provides theoretical support for the mixed use of A. argyi and A. indica in most regions of China. Furthermore, there were both similarities and differences in volatile oil and flavonoid composition between A. argyi and A. indica. The network pharmacology results showed that A. argyi and A. indica had 23 common active compounds and that both had pharmacological effects on chronic gastritis (CG). Molecular docking analyses showed that quercetin, luteolin, and kaempferol have strong binding affinities with the target proteins JUN, TP53, AKT1, MAPK3, TNF, MAPK, and IL6. The cell experiment results further demonstrated that A. argyi and A. indica treat CG via the NOD-like receptor pathway. Based on the theory of pharmaphylogeny, this study explored the pharmaphylogeny between A. argyi and A. indica from various perspectives to provide a basis for the substitution of A. argyi and A. indica.

4.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4344-4359, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581037

RESUMO

The Solanaceae plants distributed in China belong to 105 species and 35 varietas of 24 genera. Some medicinal plants of Solanaceae are rich in tropane alkaloids(TAs), which have significant pharmacological activities. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, pharmacological activities, and biosynthetic pathways of TAs in Solanaceous plants were summarized. Besides, the phylogeny of medicinal plants belonging to Solanaceae was visualized by network diagram. Fourteen genera of Solanaceae plants in China contain TAs and have medical records. TAs mainly exist in Datura, Anisodus, Atropa, Physochlaina, and Hyoscyamus. The TAs-containing species were mainly concentrated in Southwest China, and the content of TAs was closely related to plant distribution area and altitude. The Solanaceae plants containing TAs mainly have antispasmodic, analgesic, antiasthmatic, and antitussive effects. Modern pharmacological studies have proved the central sedative, pupil dilating, glandular secretion-inhibiting, and anti-asthma activities of TAs. These pharmacological activities provide a reasonable explanation for the traditional therapeutic efficacy of tropane drugs. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, and modern pharmacological activities of TAs-containing species in Solanaceae were analyzed for the first time. Based on these data, the genetic relationship of TAs-containing Solanaceae species was preliminarily discussed, which provided a scientific basis for the basic research on TAs-containing solanaceous species and was of great significance for the development of natural medicinal plant resources containing TAs.


Assuntos
Plantas Medicinais , Solanaceae , Vias Biossintéticas , Filogenia , Solanaceae/genética , Tropanos
5.
Front Pharmacol ; 12: 708549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526898

RESUMO

Xanthoceras sorbifolium Bunge (Sapindaceae) is a native Chinese plant with promising applications as a biofuel feedstock and a source of novel drugs. Historical records and documents from different periods have mentioned the use of X. sorbifolium and its botanical constituents in treating diseases, highlighting its central role in Chinese and Mongolian traditional medicinal therapies. Phytochemical research has focused on the husks, leaves, trunks, and branches of this herb. A total of 278 chemical compounds have been isolated and divided into 8 categories: triterpenoids, flavonoids, phenylpropanoids, steroids, phenols, fatty acids, alkaloids, and quinones. Modern pharmacological studies on X. sorbifolium have demonstrated positive effects on learning and memory, as well as anti-inflammatory, anti-tumor, and anti-oxidative properties. This review provides a comprehensive analysis of the available research on X. sorbifolium, focusing on the relationship between chemical constituents, traditional uses, and pharmacological effects. We also assess the potential for therapeutic and other applications of this plant in support of further research and development of X. sorbifolium.

6.
Front Pharmacol ; 11: 48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116723

RESUMO

Cymbaria daurica L. is widely used in traditional Mongolian medicine for the treatment of impetigo, psoriasis, pruritus, fetotoxicity, and diabetes. Therefore, the anti-inflammatory and α-glucosidase-inhibitory activities of four polar C. daurica extracts (water, n-butanol, ethyl acetate, and petroleum ether extract) were preliminarily evaluated to identify the active extracts. We also investigated the chemical composition of the active extracts by phytochemical analysis. The n-butanol and ethyl acetate extracts exhibited significant (p < 0.05) anti-inflammatory activities by inhibiting lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells. None of the tested extracts exhibited cytotoxic effects at the effective concentrations. The ethyl acetate extract significantly inhibited α-glucosidase activity, and the inhibition potency was equivalent to that of acarbose (p > 0.05). The n-Butanol extract presented the second highest inhibitory activity. As the n-butanol and ethyl acetate extracts were found to have potent anti-inflammatory and α-glucosidase-inhibitory activities, we separated and identified 10 compounds from the extracts. Among them, vanillic acid, cistanoside F, echinacoside, arenarioside, verbascoside, isoacteoside, and tricin were isolated from C. daurica for the first time. Further, 30 compounds from the n-butanol and ethyl acetate extracts of C. daurica were identified using UHPLC-Q-Exactive. The present study demonstrates for the first time that C. daurica contains phenylethanoid glycosides. In addition, this novel HPLC method was subsequently used for simultaneous identification of five compounds in the n-butanol and ethyl acetate extracts of C. daurica. This study provides a chemical basis for further characterization and utilization of C. daurica, which could be a potential source of novel anti-diabetic and anti-inflammatory agents.

7.
RSC Adv ; 10(19): 11463-11474, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495311

RESUMO

Lamiophlomis rotata (Benth.) Kudo is a herbaceous plant of the family Lamiaceae, subfamily Lamioideae. Approximately, 127 chemical constituents have been isolated and identified from L. rotata, including iridoids, flavonoids, phenylethanoid glycosides, polysaccharides, and organic acids. These chemical constituents have extensive pharmacological properties, which include anti-nociceptive, haemostatic, anti-inflammatory, anti-tumour, immunomodulatory, antioxidant, and cardio-protective activities. Documentation of its historical use in traditional medicine and contemporary phytochemical and pharmacological research indicate that L. rotata has significant potential in therapeutic and health care applications. Both whole extracts and individual chemical components isolated from this plant exhibit a wide range of biological activities that warrant further investigation. These investigations can be assisted by careful review of existing traditional knowledge from diverse cultural backgrounds. A new search for chemical and biological markers and reinforced protection of the germplasm resources of L. rotata are also important to ensure targeted and sustainable use of this medicinal resource. The aim of this review was to provide comprehensive information on the botanical characteristics, traditional uses, ethnopharmacology, chemical and pharmacological properties, toxicity profile, and conservation status of L. rotata, to improve understanding of its mechanisms of action so that novel therapeutic agents may be developed from this plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA