Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Sci J ; 93(1): e13790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504192

RESUMO

Plant extracts were considered as natural resources to alleviate weaning stress in pig production. A 28-day study (Phase 1: d 0-14 and Phase 2: d 15-28) was conducted to investigate the effects of compound of hawthorn and yam extracts on growth performance, intestinal health, and immune function in weaned pigs. A total of 144 weaned pigs with average body weight (BW) of 7.89 ± 1.09 kg were assigned to three treatments with six replicates pens by BW and sex. Dietary treatments included negative control (NC), corn-soybean meal basal diet; positive control (PC), NC + 0.08% enzyme preparations and 0.3% acidifiers; and CHY, NC + 0.3% compound of hawthorn and yam extracts. Compared with NC-fed pigs, pigs fed CHY had greater (p < 0.05) growth performance in Phase 1. The CHY-fed pigs had greater (p < 0.05) activities of duodenal lipase, trypsin, and greater (p < 0.05) serum concentrations of total antioxidant capacity and glutathione peroxidase. The CHY-fed pigs had improved (p < 0.05) jejunal morphology and greater (p < 0.05) ileac valeric acid and colonic propionic acid, isobutyric acid concentrations than NC- and PC-fed pigs. In conclusion, CHY can improve growth performance and is a promising additive in weaned pig diets.


Assuntos
Crataegus , Dioscorea , Animais , Peso Corporal , Imunidade , Suínos , Desmame
2.
Appl Environ Microbiol ; 88(22): e0129622, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36300953

RESUMO

Probiotics are widely used to promote performance and improve gut health in weaning piglets. Therefore, the objective of this study was to investigate the effects of dietary supplementation with Bifidobacterium animalis subsp. lactis (B. animalis) JYBR-190 on the growth performance, intestine health, and gut microbiota of weaning piglets. The results showed that the dietary addition of B. animalis significantly improved growth performance and decreased diarrhea incidence. B. animalis increased villus height in the duodenum and elevated goblet cell numbers and amylase activity in the jejunum. Additionally, B. animalis supplementation markedly increased total antioxidant capacity in jejunal mucosa but declined the malondialdehyde content. B. animalis treatment did not affect the mRNA expressions associated with the intestinal barrier and inflammatory cytokine in various intestinal segments. Microbiota analysis indicated that a diet supplemented with B. animalis significantly increased the relative abundances of health-promoting bacteria in the lumen, such as Streptococcus, Erysipelotrichaceae, Coprococcus, and Oscillibacter. There was a trend for B. animalis fed piglets to have a higher relative abundance of B. animalis in ileal digesta. Moreover, B. animalis-treated pigs decreased the abundance of Helicobacter and Escherichia-Shigella in ileal mucosa-associated microbiota. In summary, this study showed that B. animalis supplementation stimulated growth performance, improved gut development, enriched beneficial bacteria abundances, and declined intestinal pathogens populations, while B. animalis had limited effects on the intestinal barrier and immune function. IMPORTANCE In the modern swine industry, weaning is a critical period in the pig's life cycle. Sudden dietary, social, and environmental changes can easily lead to gut microbiota dysbiosis, diarrhea, and a decrease in growth performance. To stabilize intestinal microbiota and promote animal growth, antibiotics were widely applied in swine diets during the past few decades. However, the side effects of antibiotics posed a great threat to public health and food safety. Therefore, it is urgent to find and develop antibiotic alternatives. The growing evidence suggested that probiotics can be preferable alternatives to antibiotics because they can modulate microbiota composition and resist pathogens colonization. In this study, our results indicated that dietary supplementation with Bifidobacterium animalis promoted growth in weaning piglets by improving gut development, increasing beneficial bacteria abundances, and declining pathogens populations.


Assuntos
Bifidobacterium animalis , Microbioma Gastrointestinal , Suínos , Animais , Desmame , Antioxidantes/metabolismo , Bifidobacterium animalis/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Diarreia , Bactérias/metabolismo , Antibacterianos , Ração Animal/análise
3.
Arch Anim Nutr ; 75(2): 121-136, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33557604

RESUMO

The objective of this study was to determine whether dietary tea tree oil (TTO) supplementation could effectively replace the antibiotics through modulating the antioxidant capacity and intestinal microbiota profile, and then decreasing the diarrhoea incidence and improving the growth performance of weaned pigs. A total of 216 weaned pigs with initial body weights (BW) of 9.19 ± 1.86 kg were randomly allocated to three dietary treatments in a completely randomised design. The dietary treatments included a corn-soybean meal basal diet (CON) without any antibiotics, and two experimental diets formulated by adding 75 mg/kg aureomycin (AGP) or 100 mg/kg TTO into the basal diet, respectively. Pigs fed the TTO diet showed greater gain to feed ratio (p < 0.05) than those fed CON and AGP diets during d 0-14 and d 14-28. Both dietary TTO and AGP supplementation tended to increase the average daily gain of weaned pigs during d 14-28 (p = 0.06) and the overall 28-d period (p = 0.07), and significantly reduced (p < 0.05) the diarrhoea incidence during d 0-14 compared with the CON treatment. In addition, dietary TTO supplementation improved the apparent total tract digestibility of dry matter and ether extract (p < 0.05), and increased (p < 0.05) the propionate and butyrate concentrations in faecal samples of weaned pigs. Moreover, pigs fed the TTO diet showed greater total antioxidant capacity, greater superoxide dismutase and interleukin-10 concentrations, and lower malondialdehyde concentration in serum than those fed the CON diet (p < 0.05). Furthermore, pigs fed the TTO diet demonstrated greater relative abundance of Clostridiaceae_1, while those fed the AGP diet exhibited greater relative abundance of Lactobacillaceae at family level. In conclusion, dietary TTO supplementation could improve growth performance in weaned pigs, which could be mainly attributed to the benefits on nutrient digestibility, antioxidative capacity and microbial community profile.


Assuntos
Microbioma Gastrointestinal/fisiologia , Sus scrofa , Óleo de Melaleuca/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Distribuição Aleatória , Sus scrofa/crescimento & desenvolvimento , Sus scrofa/imunologia , Sus scrofa/metabolismo , Sus scrofa/microbiologia , Óleo de Melaleuca/administração & dosagem
4.
Protein Pept Lett ; 24(5): 449-455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28240159

RESUMO

This study was conducted to evaluate the effect of flavors on reproductive performance of sows and we also studied its effect on gut barrier function. Forty-eight Landrace × Yarkshire sows were randomly allotted and fed a basal diet added 0%, 0.05% or 0.10% flavor feed, respectively from parturition to day 28 of weaning. The results showed that supplementation of 0.05% or 0.10% flavors increased average daily feed intake (ADFI) of sows and average daily gain (ADG) of piglets, decreased the weight losses of sows, increased the survival ratio of weaning piglets (P < 0.05), especially shorten the post-weaning estrus interval significantly (P < 0.05). Supplementation of flavor additives tend to reduce the weight losses of sows and raise the survival ratio of piglet weaned (P > 0.05). Moreover, addition of flavors in diets reduced the intestinal permeability and enhanced digestibility of dry matter, crude protein, and energy (P < 0.05). Flavors supplementation significantly increased the level of gonadotropin releasing hormne (GnRH) of serum in sows after weaning. In conclusion, the results suggested that supplementation of dietary flavors could improve digestibility of nutrients and the reproductive performance of sows as well as the gut barrier function.


Assuntos
Ração Animal , Suplementos Nutricionais , Lactação/fisiologia , Modelos Biológicos , Reprodução/fisiologia , Animais , Animais Lactentes , Feminino , Absorção Gastrointestinal/fisiologia , Hormônio Liberador de Gonadotropina/sangue , Sus scrofa , Suínos , Aumento de Peso
5.
Anim Sci J ; 86(10): 891-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25919456

RESUMO

This experiment was conducted to determine the optimal standardized ileal digestible lysine (SID Lys) level in diets fed to primiparous sows during lactation. A total of 150 (Landrace × Large White) crossbred gilts (weighing 211.1 ± 3.5 kg with a litter size of 11.1 ± 0.2) were fed lactation diets (3325 kcal metabolizable energy (ME)/kg) containing SID Lys levels of 0.76, 0.84, 0.94, 1.04 or 1.14%, through 28 days lactation. Gilts were allocated to treatments based on their body weight and backfat thickness 48 h after farrowing. Gilt body weight loss was significantly (P < 0.05) decreased by increasing dietary SID Lys levels. Fitted broken-line (P < 0.05) and quadratic plot (P < 0.05) analysis of body weight loss indicated that the optimal SID Lys for primiparous sows was 0.85 and 1.01%, respectively. Average daily feed intake (ADFI), weaning-to-estrus interval and subsequent conception rate were not affected by dietary SID Lys levels. Increasing dietary lysine had no effect on litter performances. Protein content in milk was increased by dietary SID Lys (P < 0.05). Dietary SID Lys tended to increase concentrations of serum insulin-like growth factor I (P = 0.066). These results of this experiment indicate that the optimal dietary SID Lys for lactating gilts was at least 0.85%, which approaches the recommendation of 0.84% that is estimated by the National Research Council (2012).


Assuntos
Ração Animal , Suplementos Nutricionais , Lisina/administração & dosagem , Animais , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Lactação/fisiologia , Proteínas do Leite/metabolismo , Paridade , Gravidez , Suínos
6.
J Anim Sci Biotechnol ; 5(1): 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25343026

RESUMO

The objective of this study was to evaluate the effects of supplemental magnesium (Mg) on the performance of gilts and parity 3 sows and their piglets. Fifty-six gilts (Trial 1) and 56 sows (Trial 2) were assigned to one of 4 treatments according to their mating weight, respectively. The treatments comprised corn-soybean meal based gestation and lactation diets (0.21% magnesium) supplemented with 0, 0.015, 0.03, or 0.045% Mg from mating until weaning. The results showed that magnesium supplementation significantly (P < 0.05) reduced the weaning to estrus interval in both gilts and sows. There were significant effects (P < 0.05) of supplemental magnesium on the total number of piglets born, born alive and weaned in sows. In late gestation and lactation, the digestibility of crude fiber (quadratic effects, P < 0.05), and crude protein (P < 0.05), were significantly influenced by magnesium in gilts and sows, respectively. There were differences among the 4 groups in terms of the apparent digestibility of dry matter and crude fiber in sows (P < 0.05) during both early and late gestation. The apparent digestibility of gross energy was increased for sows in late gestation (P < 0.05), and lactation (quadratic effects, P < 0.05). At farrowing and weaning, serum prolactin levels and alkaline phosphate activities linearly increased in sows as the Mg supplementation increased (P < 0.05). Serum Mg of sows at farrowing and serum urea nitrogen of sows at weaning was significantly influenced by Mg supplementation (P < 0.05). The Mg concentration in sow colostrum and the serum of their piglets were increased by supplemental magnesium (P < 0.05). In addition, growth hormone levels were linearly elevated (P < 0.05) in the serum of piglets suckling sows. Our data demonstrated that supplemental magnesium has the potential to improve the reproduction performance of sows, and the suitable supplemental dose ranged from 0.015% to 0.03%.

7.
J Nutr ; 136(7): 1786-91, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16772438

RESUMO

This study was conducted to investigate the mechanism for the effect of elevated levels of dietary zinc oxide (ZnO) in enhancing the intestinal growth of weanling piglets. In Experiment 1, 4-wk-old (8.1 +/- 0.6 kg) crossbred barrows (n = 36) were assigned randomly to 1 of the 2 dietary groups, with 6 pens/group (3 pigs/pen). One group was fed the basal diet containing 100 mg Zn/kg diet. The other group was fed the basal diet supplemented with ZnO to provide 3000 mg Zn/kg diet. Pigs consumed their feed ad libitum for 14 d. In Experiment 2, 4-wk-old (7.6 +/- 0.16 kg) crossbred barrows (n = 16) were housed individually and assigned to 1 of the 2 dietary groups (8 pigs/group) as in Experiment 1, except that the 2 groups were pair-fed the same amount of feed. At the end of a 14-d treatment period, all of the pigs in both Experiments 1 and 2 were weighed, feed consumption was measured, and blood samples were collected for assays of insulin-like growth factor-I (IGF-I). In addition, 1 pig from each pen in Experiments 1 and 2 was selected randomly to obtain the small-intestinal mucosa for analyzing IGF-I and IGF-I receptor (IGF-IR) gene expression and to determine the small-intestinal morphology. In Experiment 1, dietary supplementation of ZnO increased (P < 0.05) the daily body weight gain and daily feed intake. In Experiment 2, dietary supplementation of ZnO increased (P < 0.05) the daily body weight gain and feed conversion efficiency. In both experiments, the villous height of the small-intestinal mucosa and both the mRNA and protein levels for IGF-I and IGF-IR in the small intestine were markedly enhanced (P < 0.05) by feeding elevated levels of Zn. Serum IGF-I levels did not differ between the control and Zn-supplemental groups in either experiment. Collectively, these results suggest that dietary Zn supplementation exerts its beneficial effects on the intestinal growth of weanling piglets through increasing IGF-I and IGF-IR expression in the small-intestinal mucosa.


Assuntos
Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Receptor IGF Tipo 1/efeitos dos fármacos , Óxido de Zinco/farmacologia , Animais , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Intestino Delgado/metabolismo , Masculino , Receptor IGF Tipo 1/genética , Suínos , Desmame , Óxido de Zinco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA