Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 121: 578-591, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27318981

RESUMO

Noncovalent proteasome inhibitors introduce an alternative mechanism of inhibition to that of covalent inhibitors, e.g. carfilzomib, used in cancer therapy. A multistep hierarchical structure-based virtual screening (SBVS) of the 65,375 NCI lead-like compound library led to the identification of two compounds (9 and 28) which noncovalently inhibited the chymotrypsin-like (ChT-L) activity (Ki = 2.18 and 2.12 µM, respectively) with little or no effects on the other two major proteasome proteolytic activities, trypsin-like (T-L) and post-glutamyl peptide hydrolase (PGPH) activities. A subsequent hierarchical similarity search over the full NCI database with the most active tripeptide-based inhibitor 9 resulted in the discovery of the ß5/ß6-specific tripeptide derivative 38 that noncovalently binds the ChT-L site (Ki = 0.42 µM). The solution structure of 9 and 38 was solved by (1)H NMR spectroscopy and the binding mode of the inhibitors was elucidated by docking experiments using the yeast 20S proteasome. Compound 38 (IC50 = 26.7 µM) is slightly more potent than 9 (IC50 = 34.3 µM) at inhibiting survival of dexamethasone-resistant (MM.1R) human multiple myeloma cells. The identified ligand thus provides valuable insights for the future structure-based design of subtype-specific proteasome inhibitors.


Assuntos
Quimotripsina/metabolismo , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismo , Conformação Proteica , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Interface Usuário-Computador
2.
Mini Rev Med Chem ; 16(17): 1374-1391, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27156518

RESUMO

Human African Trypanosomiasis (HAT) is an endemic parasitic disease of sub-Saharan Africa, caused by two subspecies of protozoa belonging to Trypanosoma genus: T. brucei gambiense and T. brucei rhodesiense. In this context the inhibition of the papain-family cysteine proteases rhodesain and TbCatB has to be considered a promising strategy for HAT treatment. Rhodesain, the major cathepsin L-like cysteine protease of T. brucei rhodesiense, is a lysosomal protease essential for parasite survival. It is involved in parasite invasivity, allowing it to cross the blood-brain barrier (BBB) of the human host, causing the second lethal stage of the disease. Moreover, it plays an important role in immunoevasion, being involved in the turnover of variant surface glycoproteins of the T. brucei coat and in the degradation of immunoglobulins, avoiding a specific immune response by the host cells. On the other hand TbCatB, a cathepsin B-like cysteine protease, present in minor abundance in T. brucei, showed a key role in the degradation of host transferrin, which is necessary for iron acquisition by the parasite. In this review article we now discuss the most active peptide, peptidomimetic and non-peptide rhodesain and TbCatB inhibitors as valuable strategy to treat HAT, due also to the complementary role of the two T. brucei proteases.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Proteínas de Protozoários/metabolismo , Tripanossomicidas/metabolismo , Aziridinas/química , Aziridinas/metabolismo , Aziridinas/farmacologia , Aziridinas/uso terapêutico , Barreira Hematoencefálica/metabolismo , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Sulfonas/química , Sulfonas/metabolismo , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , Tripanossomíase Africana/tratamento farmacológico
3.
Hum Exp Toxicol ; 26(2): 125-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17370870

RESUMO

INTRODUCTION: Poisoning from organophosphates and carbamates is a significant cause of morbidity and mortality worldwide. Concerns have been expressed over the safety and efficacy of the use of oximes such as pralidoxime (2-PAM) in patients with carbamate poisoning in general, and more so with carbaryl poisoning specifically. The goal of the present study was to evaluate the role of 2-PAM in a mouse model of lethal carbaryl poisoning. METHODS: Female ICR Swiss Albino mice weighing 25-30 g were acclimated to the laboratory and housed in standard conditions. One hundred and ten mice received an LD50 dose of carbaryl subcutaneously. Ten minutes later, they were randomized by block randomization to one of eight treatment groups: normal saline control, atropine alone, 100 mg/kg 2-PAM with and without atropine, 50 mg/kg 2-PAM with and without atropine, and 25 mg/kg 2-PAM with and without atropine. All medications were given intraperitoneally and the atropine dose was constant at 4 mg/kg. The single objective endpoint was defined as survival to 24 hours. Fatalities were compared using a Chi squared or Fisher's exact test. RESULTS: Following an LD50 of carbaryl, 60% of the animals died. Atropine alone statistically improved survival (15% lethality). High dose 2-PAM with and without atropine was numerically worse, but not statistically different from control. While the middle dose of 2-PAM was no different than control, the addition of atropine improved survival (10% fatality). Low-dose 2-PAM statistically improved survival (25% lethality). Atropine further reduced lethality to 10%. CONCLUSION: When appropriately dosed, 2-PAM alone protects against carbaryl poisoning in mice. Failure to demonstrate this benefit in other models may be the result of oxime overdose.


Assuntos
Antídotos/farmacologia , Atropina/farmacologia , Carbaril/intoxicação , Reativadores da Colinesterase/farmacologia , Compostos de Pralidoxima/farmacologia , Animais , Inibidores da Colinesterase/intoxicação , Quimioterapia Combinada , Feminino , Inseticidas/intoxicação , Camundongos , Camundongos Endogâmicos ICR , Intoxicação/tratamento farmacológico
4.
J Chem Inf Comput Sci ; 44(4): 1450-5, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15272853

RESUMO

We describe the use of pharmacophore modeling as an efficient tool in the discovery of novel HIV-1 integrase (IN) inhibitors. A three-dimensional hypothetical model for the binding of diketo acid analogues to the enzyme was built by means of the Catalyst program. Using these models as a query for virtual screening, we found several compounds that contain the specified 3D patterns of chemical functions. Biological testing shows that our strategy was successful in searching for new structural leads as HIV-1 IN inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Simulação por Computador , DNA Viral/efeitos dos fármacos , DNA Viral/genética , Bases de Dados Factuais , Desenho de Fármacos , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , HIV-1/genética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA