Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 105(3): 2326-2342, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35086709

RESUMO

Concentrate-rich starter feeds are commonly fed to dairy calves to stimulate early solid feed intake and growth performance; yet, starter feeds lacking in forage fiber may jeopardize gut development. This research primarily aimed to test a complete or partial replacement of concentrates with hay of different qualities in the starter feed on nutrient intake, growth performance, apparent total-tract digestibility (ATTD) of nutrients, and blood metabolites in dairy calves. Immediately after birth, 40 Holstein Friesian calves were randomly allocated to 1 of 4 starter diets, which differed in hay quality and concentrate inclusion [MQH = 100% medium-quality hay, 9.4 MJ of metabolizable energy (ME), 149 g of crude protein (CP), 522 g of neutral detergent fiber (NDF)/kg of dry matter (DM); HQH = 100% high-quality hay, 11.2 MJ of ME, 210 g of CP, 455 g of NDF/kg of DM; MQH+C = 30% medium-quality hay + 70% starter concentrate; HQH+C = 30% high-quality hay + 70% starter concentrate]. The concentrate consisted mainly of grains, oilseeds, and mineral supplements (13.5 MJ of ME, 193 g of CP, 204 g of NDF/kg of DM). Calves were used in the experiment from d 1 to 99 of life. During the first 4 wk, all calves were fed acidified whole milk ad libitum, and afterward they were gradually weaned from wk 5 to 12. Calves had ad libitum access to their starter diets and water throughout the experiment. Milk, water, and solid feed intake was recorded daily, live weight was measured once a week, and blood samples were collected on d 1, 3, 7, 21, 49, 77, and 91 and analyzed for selected metabolites. The ATTD was measured in wk 14 of life. Total DM intake and daily weight gain of calves were not affected by the starter feed during the first 8 wk of life. However, from wk 9 to 14, calves fed the MQH diet had lower DM, ME, and CP intake and gained less weight than calves from the other experimental groups. Feeding the HQH diet resulted in similar CP and ME intake and growth performance compared with calves receiving diets containing concentrates. Furthermore, feeding the HQH diet improved the ATTD of NDF, resulting in similar ATTD of organic matter with the HQH+C and MQH+C groups. Interestingly, calves fed the HQH+C diet showed less sorting for concentrate, compared with the MQH+C group. Concentration of blood metabolites, including glucose, lactate, insulin, nonesterified fatty acids, triglycerides, and total protein, did not differ after the first week of life. However, serum ß-hydroxybutyrate was higher in calves fed the HQH diet starting from wk 11. Both groups fed the hay-only diets maintained higher cholesterol levels after weaning compared with the groups fed hay-concentrate mixtures. In conclusion, feeding high-quality hay can fully replace starter concentrates in the feeding of dairy calves without adverse effects on performance during the rearing period, while increasing forage fiber intake and utilization, which enhanced ruminal ketogenesis and cholesterogenesis around weaning. Further research is needed to evaluate long-term effects of feeding high-quality hay on health and development of dairy calves, especially in terms of the observed improvements in ruminal ketogenesis and cholesterogenesis around weaning.


Assuntos
Ração Animal , Rúmen , Ração Animal/análise , Animais , Peso Corporal , Bovinos , Dieta/veterinária , Fibras na Dieta/metabolismo , Ingestão de Alimentos , Metaboloma , Rúmen/metabolismo , Desmame
2.
Animal ; 13(6): 1214-1223, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30326981

RESUMO

Grain-rich diets often lead to subacute ruminal acidosis (SARA) impairing rumen and systemic cattle health. Recent data suggest beneficial effects of a clay mineral (CM)- based product on the rumen microbiome of cattle during SARA. This study sought to investigate whether the CM supplementation can counteract SARA-induced perturbations of the bovine systemic health. The study used an intermittent diet-induced SARA-model with eight dry Holstein cows receiving either no additive as control or CM via concentrates (n=8 per treatment). Cows received first a forage diet (Baseline) for 1 week, followed by a 1-week SARA-challenge (SARA 1), a 1-week recovery phase (Recovery) and finally a second SARA-challenge for 2 weeks (SARA 2). Cows were monitored for feed intake, reticular pH and chewing behavior. Blood samples were taken and analyzed for metabolites related to glucose and lipid metabolism as well as liver health biomarkers. In addition, a targeted electrospray ionization-liquid chromatography-MS-based metabolomics approach was carried out on the plasma samples obtained at the end of the Baseline and SARA 1 phase. Data showed that supplementing the cows' diet with CM improved ruminating chews per regurgitated bolus by 16% in SARA 1 (P=0.01) and enhanced the dry matter intake during the Recovery phase (P=0.05). Moreover, the SARA-induced decreases in several amino acids and phosphatidylcholines were less pronounced in cows receiving CM (P≤0.10). The CM-supplemented cows also had lower concentrations of lactate (P=0.03) and biogenic amines such as histamine and spermine (P<0.01) in the blood. In contrast, the concentration of acylcarnitines with key metabolic functions was increased in the blood of treated cows (P≤0.05). In SARA 2, the CM-cows had lower concentrations of the liver enzymes aspartate aminotransferase and γ-glutamyltransferase (P<0.05). In conclusion, the data suggest that supplementation of CM holds the potential to alleviate the negative effects of high-grain feeding in cattle by counteracting multiple SARA-induced perturbations in the systemic metabolism and liver health.


Assuntos
Bovinos/fisiologia , Argila , Ingestão de Alimentos , Fígado/enzimologia , Minerais/metabolismo , Plasma/química , Rúmen/fisiologia , Ração Animal/análise , Animais , Bovinos/sangue , Estudos Cross-Over , Dieta/veterinária , Suplementos Nutricionais/análise , Ingestão de Alimentos/efeitos dos fármacos , Grão Comestível/fisiologia , Concentração de Íons de Hidrogênio , Mastigação/efeitos dos fármacos , Metaboloma , Minerais/administração & dosagem , Plasma/metabolismo , Rúmen/efeitos dos fármacos
3.
Animal ; 12(s2): s399-s418, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30139397

RESUMO

Due to their high energy requirements, high-yielding dairy cows receive high-grain diets. This commonly jeopardises their gastrointestinal health by causing subacute ruminal acidosis (SARA) and hindgut acidosis. These disorders can disrupt nutrient utilisations, impair the functionalities of gastrointestinal microbiota, and reduce the absorptive and barrier capacities of gastrointestinal epithelia. They can also trigger inflammatory responses. The symptoms of SARA are not only due to a depressed rumen pH. Hence, the diagnosis of this disorder based solely on reticulo-rumen pH values is inaccurate. An accurate diagnosis requires a combination of clinical examinations of cows, including blood, milk, urine and faeces parameters, as well as analyses of herd management and feed quality, including the dietary contents of NDF, starch and physical effective NDF. Grain-induced SARA increases acidity and shifts availabilities of substrates for microorganisms in the reticulo-rumen and hindgut and can result in a dysbiotic microbiota that are characterised by low richness, diversity and functionality. Also, amylolytic microorganisms become more dominant at the expense of proteolytic and fibrolytic ones. Opportunistic microorganisms can take advantage of newly available niches, which, combined with reduced functionalities of epithelia, can contribute to an overall reduction in nutrient utilisation and increasing endotoxins and pathogens in digesta and faeces. The reduced barrier function of epithelia increases translocation of these endotoxins and other immunogenic compounds out of the digestive tract, which may be the cause of inflammations. This needs to be confirmed by determining the toxicity of these compounds. Cows differ in their susceptibility to poor gastrointestinal health, due to variations in genetics, feeding history, diet adaptation, gastrointestinal microbiota, metabolic adaptation, stress and infections. These differences may also offer opportunities for the management of gastrointestinal health. Strategies to prevent SARA include balancing the diet for physical effective fibre, non-fibre carbohydrates and starch, managing the different fractions of non-fibre carbohydrates, and consideration of the type and processing of grain and forage digestibility. Gastrointestinal health disorders due to high grain feeding may be attenuated by a variety of feed supplements and additives, including buffers, antibiotics, probiotics/direct fed microbials and yeast products. However, the efficacy of strategies to prevent these disorders must be improved. This requires a better understanding of the mechanisms through which these strategies affect the functionality of gastrointestinal microbiota and epithelia, and the immunity, inflammation and 'gastrointestinal-health robustness' of cows. More representative models to induce SARA are also needed.


Assuntos
Acidose/veterinária , Ração Animal/análise , Doenças dos Bovinos/microbiologia , Fibras na Dieta , Suplementos Nutricionais , Microbioma Gastrointestinal , Acidose/microbiologia , Animais , Líquidos Corporais/química , Metabolismo dos Carboidratos , Bovinos , Dieta/veterinária , Epitélio/metabolismo , Epitélio/microbiologia , Fezes/microbiologia , Feminino , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Concentração de Íons de Hidrogênio , Lactação , Leite/química , Rúmen/metabolismo , Rúmen/microbiologia , Amido/metabolismo
4.
J Dairy Sci ; 101(3): 2335-2349, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29331466

RESUMO

The feeding of concentrate-rich diets may lead to microbial imbalances and dysfermentation in the rumen. The main objective of this study was to determine the effects of supplementing phytogenic compounds (PHY) or autolyzed yeast (AY) on rumen fermentation and microbial abundance in cows intermittently fed concentrate-rich diets. The experiment was carried out as an incomplete 3 × 4 Latin square design, with 8 nonlactating rumen-fistulated Holstein-Friesian cows. The cows were randomly assigned to a concentrate diet that was either not supplemented (CON), or supplemented with PHY or AY. Each of the 4 consecutive experimental periods was composed of a 1-wk roughage-only diet (RD), 6-d gradual concentrate increase, followed by 1 wk of 65% concentrate (dry matter basis; Conc I), and 1 wk of RD and a final 2-wk 65% concentrate (dry matter basis; Conc II) phase. Digesta samples were collected from the rumen mat for bacterial 16S rRNA gene Illumina MiSeq (Illumina, Balgach, Switzerland) sequencing, and samples of particle-associated rumen liquid were obtained for measuring short-chain fatty acids, lactate, ammonia, and pH during RD (d 6), Conc I (d 19), and Conc II (d 39). The concentrate feeding caused a decrease of overall bacterial diversity indices, especially during Conc I. The genera Ruminococcus, Butyrivibrio, and Coprococcus were decreased, whereas Prevotella, Megasphaera, Lachnospira, and Bacteroides were increased in abundance. Supplementation of both feed additives increased the abundance of gram-positive and decreased that of gram-negative bacteria. Supplementation of AY enhanced cellulolytic bacteria such as Ruminococcus spp., whereas PHY decreased starch and sugar fermenters including Bacteroides spp., Shuttleworthia spp., and Syntrophococcus spp. Moreover, PHY supplementation increased butyrate percentage in the rumen in both concentrate phases. In conclusion, intermittent high-concentrate feeding altered the digesta-associated rumen bacterial community and rumen fermentation with more significant alterations found in Conc I than in Conc II. The data also showed that both feed additives had the most significant modulatory effects on the bacterial community, and their subsequent fermentation, during periods of low pH.


Assuntos
Ração Animal/análise , Bactérias/classificação , Bovinos/fisiologia , Suplementos Nutricionais , Microbiota , Fermento Seco , Animais , Butiratos/análise , Bovinos/microbiologia , Dieta/veterinária , Grão Comestível , Ácidos Graxos Voláteis/análise , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Lactação , Distribuição Aleatória , Rúmen/química , Rúmen/microbiologia
5.
J Dairy Sci ; 101(2): 872-888, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29153519

RESUMO

Rumen health is of vital importance in ensuring healthy and efficient dairy cattle production. Current feeding programs for cattle recommend concentrate-rich diets to meet the high nutritional needs of cows during lactation and enhance cost-efficiency. These diets, however, can impair rumen health. The term "subacute ruminal acidosis" (SARA) is often used as a synonym for poor rumen health. In this review, we first describe the physiological demands of cattle for dietary physically effective fiber. We also provide background information on the importance of enhancing salivary secretions and short-chain fatty acid absorption across the stratified squamous epithelium of the rumen; thus, preventing the disruption of the ruminal acid-base balance, a process that paves the way for acidification of the rumen. On-farm evaluation of dietary fiber adequacy is challenging for both nutritionists and veterinarians; therefore, this review provides practical recommendations on how to evaluate the physical effectiveness of the diet based on differences in particle size distribution, fiber content, and the type of concentrate fed, both when the latter is part of total mixed ration and when it is supplemented in partial mixed rations. Besides considering the absolute amount of physically effective fiber and starch types in the diet, we highlight the role of several feeding management factors that affect rumen health and should be considered to control and mitigate SARA. Most importantly, transitional feeding to ensure gradual adaptation of the ruminal epithelium and microbiota; monitoring and careful management of particle size distribution; controlling feed sorting, meal size, and meal frequency; and paying special attention to primiparous cows are some of the feeding management tools that can help in sustaining rumen health in high-producing dairy herds. Supplementation of feed additives including yeast products, phytogenic compounds, and buffers may help attenuate SARA, especially during stress periods when the risk of a deficiency of physically effective fiber in the diet is high, such as during early lactation. However, the usage of feed additives cannot fully compensate for suboptimal feeding management.


Assuntos
Acidose/veterinária , Ração Animal/análise , Doenças dos Bovinos/prevenção & controle , Indústria de Laticínios/métodos , Dieta/veterinária , Fibras na Dieta/análise , Rúmen/fisiopatologia , Equilíbrio Ácido-Base , Acidose/fisiopatologia , Acidose/prevenção & controle , Animais , Bovinos , Doenças dos Bovinos/fisiopatologia , Suplementos Nutricionais/análise , Feminino
6.
J Dairy Sci ; 100(12): 9702-9714, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28964521

RESUMO

Feeding of concentrate-rich diets impairs chewing behavior and leads to rumen acidosis in cattle. Because of their modulatory effects on ruminal fermentation, phytogenic compounds (PHY) and autolyzed yeast derivatives (AY) may alleviate the negative consequences of high-concentrate diets. Therefore, this research investigated if chewing behavior and the reticular pH dynamics are modulated by AY and PHY supplementation during repeated concentrate-rich challenges used to simulate intermittent rumen acidotic insults. Eight rumen-cannulated, dry, and nonpregnant Holstein cows were assigned to an incomplete double 4 × 3 Latin square design with 3 treatments and 4 experimental runs (n = 8/treatment). Cows were fed concentrates either not supplemented (CON) or supplemented with PHY or AY. Initially, cows were fed a pure forage diet (FD) and switched to a 65% concentrate diet on DM basis for 1 (CONC 1) and 2 (CONC 2) wk. Between CONC 1 and CONC 2, the cows were fed the FD for 1 wk. Chewing activity was measured using noseband sensors and reticular pH by wireless pH sensors. Data showed that cows spent less time ruminating in CONC 1 than in CONC 2. In agreement, reticular pH drop was more pronounced during CONC 1 than during CONC 2. Cows fed with PHY spent 4 h less with reticular pH <6.0 during CONC 1 and 3 h less with pH <6.0 h in CONC 2 as compared with CON cows. Similarly, PHY supplementation extended rumination time with 88 min/d compared with CON cows during CONC 1. The AY supplementation increased DMI by 20% resulting in a longer eating time compared with CON diet during CONC 1. Enhancement of ruminating by PHY and eating time by AY supplementation resulted in longer total chewing time for PHY (474 min/d) and AY (466 min/d) as compared with CON (356 min/d) in CONC 1. In conclusion, cows experiencing 2 intermittent concentrate-rich challenges increased their ruminating behavior during the second challenge, and this effect was associated with higher reticular pH readings. The PHY supplementation enhanced rumination as well as reticular pH during CONC 1. However, the enhanced pH of cows fed with PHY during CONC 2 was not related to greater rumination, suggesting that influencing factors beyond rumination seemed to play a role in modulating reticular pH in PHY cows during CONC 2. The AY supplementation increased DMI without depressing rumination or reticular pH. Effects of both feed additives were more pronounced during CONC 1 challenge when reticular pH was lower.


Assuntos
Acidose/veterinária , Suplementos Nutricionais/análise , Mastigação/efeitos dos fármacos , Retículo/química , Fermento Seco/metabolismo , Acidose/prevenção & controle , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Concentração de Íons de Hidrogênio , Retículo/efeitos dos fármacos , Fermento Seco/administração & dosagem
7.
J Dairy Sci ; 99(8): 6237-6250, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236756

RESUMO

Recent data indicate beneficial effects of treating grains with lactic acid (LA) in alleviating the need for inorganic phosphorus supplementation during ruminal fermentation in vitro. The aim of this study was to evaluate the effects of feeding concentrates treated with LA with or without inorganic phosphorus supplementation on feed intake, performance, blood variables, and reticuloruminal pH in dairy cows. A total of 16 early-lactating cows (12 Simmental and 4 Brown Swiss) were included in this study from d 1 until d 37 postpartum. Cows were fed 3 total mixed rations differing in supplementation of inorganic phosphorus and treatment of concentrates. The control (CON) and LA (+P) diets included a concentrate mixture containing 0.8% monocalcium phosphate, and the LA (-P) diet contained no inorganic phosphorus source. The concentrates of the LA (+P) and LA (-P) diets were treated with 5% LA for 24h before feeding, and the concentrate of the CON diet was not treated. Dry matter intake and milk yield were recorded daily, and milk composition and blood variables were determined on several occasions during the trial. Reticuloruminal pH was measured using indwelling sensors that allowed for continuous measurement during the experimental period. Data showed depressed dry matter intake in cows receiving LA-treated concentrates, but milk yield, body weight, and body weight changes remained similar among treatment groups. Cows receiving the LA-treated diets had lower concentrations of serum nonesterified fatty acids, cholesterol, and insulin, and they tended to have higher serum phosphorus levels. On the other hand, reticuloruminal pH was lower and duration of the pH being <6.0 was longer in cows in the LA-treated groups. Aspartate aminotransferase, gamma-glutamyltransferase, and concentrations of bilirubin and bile acids were lower in the LA (-P) group. Taken together, the 5% LA-treated diet without inorganic phosphorus supplementation did not exert any negative effects on performance. The observed beneficial effects on blood metabolites related to lipid metabolism, insulin sensitivity, and liver variables, as well as the tendency for greater systemic phosphorus circulation, suggest that diets including concentrates treated with 5% LA may allow for savings of inorganic phosphorus supplementation in dairy cows. Treatment with 5% LA enhanced cows' risk of developing subacute rumen acidosis, although this condition showed no adverse effects with respect to liver variables and the inflammatory response.


Assuntos
Ração Animal/análise , Ácido Láctico/química , Fósforo/química , Rúmen/metabolismo , Animais , Aspartato Aminotransferases/sangue , Ácidos e Sais Biliares/sangue , Bilirrubina/sangue , Peso Corporal , Bovinos , Colesterol/sangue , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos não Esterificados/sangue , Concentração de Íons de Hidrogênio , Insulina/sangue , Lactação , Ácido Láctico/sangue , Metabolismo dos Lipídeos , Leite/metabolismo , Fósforo/sangue , gama-Glutamiltransferase/sangue
8.
J Dairy Sci ; 99(2): 1228-1236, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26709167

RESUMO

Besides the widely discussed negative environmental effects of dairy production, such as greenhouse gas emissions, the feeding of large amounts of potentially human-edible feedstuffs to dairy cows is another important sustainability concern. The aim of this study was therefore to investigate the effects of a complete substitution of common cereal grains and pulses with a mixture of wheat bran and sugar beet pulp in a high-forage diet on cow performance, production efficiency, feed intake, and ruminating behavior, as well as on net food production potential. Thirteen multiparous and 7 primiparous mid-lactation Holstein dairy cows were randomly assigned to 1 of 2 treatments in a change-over design with 7-wk periods. Cows were fed a high-forage diet (grass silage and hay accounted for 75% of the dry matter intake), supplemented with either a cereal grain-based concentrate mixture (CON), or a mixture of wheat bran and dried sugar beet pulp (WBBP). Human-edible inputs were calculated for 2 different scenarios based on minimum and maximum potential recovery rates of human-edible energy and protein from the respective feedstuffs. Dietary starch and neutral detergent fiber contents were 3.0 and 44.1% for WBBP, compared with 10.8 and 38.2% in CON, respectively. Dietary treatment did not affect milk production, milk composition, feed intake, or total chewing activity. However, chewing index expressed in minutes per kilogram of neutral detergent fiber ingested was 12% lower in WBBP compared with CON. In comparison to CON, the human-edible feed conversion efficiencies for energy and protein, defined as human-edible output per human-edible input, were 6.8 and 5.3 times higher, respectively, in WBBP under the maximum scenario. For the maximum scenario, the daily net food production (human-edible output minus human-edible input) increased from 5.4 MJ and 250 g of crude protein per cow in CON to 61.5 MJ and 630 g of crude protein in the WBBP diet. In conclusion, our data suggest that in forage-based dairy production systems, wheat bran and sugar beet pulp could replace common cereal grains in mid-lactation dairy cows without impairing performance, while strongly increasing human-edible feed conversion efficiency and net food production index.


Assuntos
Beta vulgaris , Bovinos , Dieta/veterinária , Fibras na Dieta , Animais , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Ingestão de Alimentos , Grão Comestível , Ingestão de Energia , Feminino , Abastecimento de Alimentos , Humanos , Lactação , Mastigação , Leite/química , Poaceae , Silagem
9.
J Dairy Sci ; 98(11): 8107-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26299164

RESUMO

Recent data indicate positive effects of treating grain with citric (CAc) or lactic acid (LAc) on the hydrolysis of phytate phosphorus (P) and fermentation products of the grain. This study used a semicontinuous rumen simulation technique to evaluate the effects of processing of barley with 50.25 g/L (wt/vol) CAc or 76.25 g/L LAc on microbial composition, metabolic fermentation profile, and nutrient degradation at low or high dietary P supply. The low P diet [3.1g of P per kg of dry matter (DM) of dietary P sources only] was not supplemented with inorganic P, whereas the high P diet was supplemented with 0.5 g of inorganic P per kg of DM through mineral premix and 870 mg of inorganic P/d per incubation fermenter via artificial saliva. Target microbes were determined using quantitative PCR. Data showed depression of total bacteria but not of total protozoa or short-chain fatty acid (SCFA) concentration with the low P diet. In addition, the low P diet lowered the relative abundance of Ruminococcus albus and decreased neutral detergent fiber (NDF) degradation and acetate proportion, but increased the abundance of several predominantly noncellulolytic bacterial species and anaerobic fungi. Treatment of grain with LAc increased the abundance of total bacteria in the low P diet only, and this effect was associated with a greater concentration of SCFA in the ruminal fluid. Interestingly, in the low P diet, CAc treatment of barley increased the most prevalent bacterial group, the genus Prevotella, in ruminal fluid and increased NDF degradation to the same extent as did inorganic P supplementation in the high P diet. Treatment with either CAc or LAc lowered the abundance of Megasphaera elsdenii but only in the low P diet. On the other hand, CAc treatment increased the proportion of acetate in the low P diet, whereas LAc treatment decreased this variable at both dietary P levels. The propionate proportion was significantly increased by LAc at both P levels, whereas butyrate increased only with the low P diet. Treatments with CAc or LAc reduced the degradation of CP and ammonia concentration compared with the control diet at both P levels. In conclusion, the beneficial effects of CAc and LAc treatment on specific ruminal microbes, fermentation profile, and fiber degradation in the low P diet suggest the potential for the treatment to compensate for the lack of inorganic P supplementation in vitro. Further research is warranted to determine the extent to which the treatment can alleviate the shortage of inorganic P supplementation under in vivo conditions.


Assuntos
Ácido Cítrico/análise , Grão Comestível , Microbioma Gastrointestinal/efeitos dos fármacos , Ácido Láctico/análise , Fósforo na Dieta/análise , Rúmen/microbiologia , Acetatos/análise , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta/análise , Ácidos Graxos Voláteis/análise , Fermentação , Hordeum , Concentração de Íons de Hidrogênio , Megasphaera/isolamento & purificação , Prevotella/isolamento & purificação , Rúmen/efeitos dos fármacos
10.
J Dairy Sci ; 98(4): 2611-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25648805

RESUMO

The role of dried distillers grains plus solubles (DDGS) and associative effects of different levels of grape seed meal (GSM) fortified in DDGS, used as both protein and energy sources in the diet, on ruminal fermentation and microbiota were investigated using rumen-simulation technique. All diets consisted of hay and concentrate mixture with a ratio of 48:52 [dry matter (DM) basis], but were different in the concentrate composition. The control diet contained soybean meal (13.5% of diet DM) and barley grain (37%), whereas DDGS treatments, unfortified DDGS (19.5% of diet DM), or DDGS fortified with GSM, either at 1, 5, 10, or 20% were used entirely in place of soybean meal and part of barley grain at a 19.5 to 25% inclusion level. All diets had similar DM, organic matter, and crude protein contents, but consisted of increasing neutral detergent fiber and decreasing nonfiber carbohydrates levels with DDGS-GSM inclusion. Compared with the soy-based control diet, the unfortified DDGS treatment elevated ammonia concentration (19.1%) of rumen fluid associated with greater crude protein degradation (~19.5%). Methane formation decreased with increasing GSM fortification levels (≥ 5%) in DDGS by which the methane concentration significantly decreased by 18.9 to 23.4 and 12.8 to 17.6% compared with control and unfortified DDGS, respectively. Compared with control, unfortified DDGS decreased butyrate proportion, and GSM fortification in the diet further decreased this variable. The proportions of genus Prevotella and Clostridium cluster XIVa were enhanced by the presence of DDGS without any associative effect of GSM fortification. The abundance of methanogenic archaea was similar, but their composition differed among treatments; whereas Methanosphaera spp. remained unchanged, proportion of Methanobrevibacter spp. decreased in DDGS-based diets, being the lowest with 20% GSM inclusion. The abundance of Ruminococcus flavefaciens, anaerobic fungi, and protozoa were decreased by the GSM inclusion. As revealed by principal component analysis, these variables were the microorganisms associated with the methane formation. Grape seed meal fortification level in the diet decreased DM and organic matter degradation, but this effect was more related to a depression of nonfiber carbohydrates degradation. It can be concluded that DDGS fortified with GSM can favorably modulate ruminal fermentation.


Assuntos
Bovinos , Dieta/veterinária , Suplementos Nutricionais , Extrato de Sementes de Uva/metabolismo , Metano/metabolismo , Microbiota/fisiologia , Rúmen , Ração Animal/análise , Animais , Bovinos/metabolismo , Bovinos/microbiologia , Suplementos Nutricionais/análise , Grão Comestível/química , Feminino , Rúmen/metabolismo , Rúmen/microbiologia
11.
Prev Vet Med ; 118(1): 45-55, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466761

RESUMO

The study investigated the effects of a mixture of herbal plants (HM) and two sources of unsaturated fatty acids (FA), extruded linseed (LS) and soybean (SB), on metabolic profile, insulin sensitivity, and oxidative status of transition dairy cows. Thirty-two prepartum Holstein cows, blocked by parity and calving day, were randomly assigned to 1 of 4 treatments, in a 2×2 factorial design, starting from 25 days before the expected calving date to 26 days postpartum. The supplementation rates of HM were 150 and 170 g/animal/day at pre- and postpartum, respectively. Blood samples were analyzed for metabolites on day 7.15±1.70 prepartum and on days 1 and 21 postpartum. An intravenous glucose tolerance test (IV-GTT) was conducted on day 25 postpartum. Data showed that cows supplemented with HM had lower serum concentration of NEFA (0.395 vs. 0.602±0.044 mmol/L; P<0.01) and NEFA to insulin ratio (P<0.01) postpartum. Compared to animals fed SB-based diets, cows fed the LS-based diet had greater serum glucose concentration during prepartum (80.7 vs. 71.3±3.32 mg/dL; P=0.06) and postpartum period (86.3 vs. 73.5±3.35 mg/dL; P=0.01), as well as lower NEFA (0.425 vs. 0.572±0.044 mmol/L; P=0.03) and insulin to glucose ratio (P<0.01) postpartum. Revised quantitative insulin-sensitivity check index revealed that supplementing HM in LS-based diet improved insulin sensitivity (0.45 vs. 0.41±0.013; P=0.03) prepartum, whereas after parturition, the HM addition was effective for both oil seeds (0.40 vs. 0.37±0.008; P=0.06) in enhancing insulin sensitivity. Result of IV-GTT indicated that cows fed LS-based diets had higher basal glucose concentration (63.7 vs. 55.7±2.37; mg/dL; P=0.02) and lower glucose area under the curve (995.8 vs. 1529.5±100.7; mg/dL×45 min; P<0.01). Supplementing HM resulted in greater total antioxidant capacity prepartum (0.55 vs. 0.48±0.017 nmol/L; P=0.01) and lower malondialdehyde concentration at prepartum (1.03 vs. 1.96±0.140 µmol/L; P<0.01) and postpartum (1.32 vs. 1.88±0.178 µmol/L; P=0.04). Although feeding LS ameliorated insulin resistance, this feeding strategy lowered total antioxidant capacity prepartum (0. 48 vs. 0.55±0.017 nmol/L; P<0.01) and increased malondialdehyde concentration postpartum more than the SB diet (1.91 vs. 1.28±0.172 µmol/L; P=0.02). Overall, both HM supplementation and LS feeding improved metabolic profile and insulin response following glucose infusion, although feeding of LS-based diets induced an increased oxidative stress.


Assuntos
Bovinos/metabolismo , Glycine max , Resistência à Insulina , Óleo de Semente do Linho , Estresse Oxidativo , Preparações de Plantas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia , Bovinos/sangue , Indústria de Laticínios , Dieta/veterinária , Feminino , Óleo de Semente do Linho/administração & dosagem , Malondialdeído/sangue , Paridade , Período Pós-Parto , Gravidez , Distribuição Aleatória , Sementes
12.
J Dairy Sci ; 98(2): 1225-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25483200

RESUMO

When fed human-edible feeds, such as grains and pulses, dairy cows are very inefficient in transforming them into animal products. Therefore, strategies to reduce human-edible inputs in dairy cow feeding are needed to improve food efficiency. The aim of this feeding trial was to analyze the effect of the full substitution of a common concentrate mixture with a by-product concentrate mixture on milk production, feed intake, blood values, and the edible feed conversion ratio (eFCR), defined as human-edible output per human edible input. The experiment was conducted as a change-over design, with each experimental period lasting for 7wk. Thirteen multiparous and 5 primiparous Holstein cows were randomly assigned to 1 of 2 treatments. Treatments consisted of a grass silage-based forage diet supplemented with either conventional ingredients or solely by-products from the food processing industry (BP). The BP mixture had higher contents of fiber and ether extract, whereas starch content was reduced compared with the conventional mixture. Milk yield and milk solids were not affected by treatment. The eFCR in the BP group were about 4 and 2.7 times higher for energy and protein, respectively. Blood values did not indicate negative effects on cows' metabolic health status. Results of this feeding trial suggest that by-products could replace common concentrate supplements in dairy cow feeding, resulting in an increased eFCR for energy and protein which emphasizes the unique role of dairy cows as net food producers.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Bovinos/fisiologia , Grão Comestível , Ração Animal/análise , Animais , Dieta/veterinária , Fibras na Dieta , Proteínas Alimentares/metabolismo , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Feminino , Indústria de Processamento de Alimentos , Humanos , Resíduos Industriais , Lactação/fisiologia , Leite/química , Poaceae , Pulso Arterial , Silagem , Amido
13.
J Dairy Sci ; 97(12): 7487-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25306268

RESUMO

This study evaluated the effects of dietary supplementation of a novel phytobiotics-rich herbal mixture (PRHM) on feed intake, performance, udder health, ruminal fermentation, and plasma metabolites in cows with moderate or high somatic cell counts (SCC) in the milk. Twenty-four Holstein dairy cows (117 ± 26 d in milk and 46.3 ± 4.7 kg of milk/d at the start of the experiment) were blocked by parity and days in milk and split into 2 groups, based on SCC in the milk; 12 cows were with moderate SCC (260,000500,000 cells/mL) in the milk. Within each SCC group, cows were blocked by milk yield and parity, and were randomly assigned to 2 different feeding regimens. Half of the cows in each SCC group (n=6) were supplemented with PRHM (185 g/cow per day, providing 12.4 g of phenolic compounds per day), and the other half (n=6) were not supplemented in their diets. The experiment lasted 36 d, whereby the first 24 d were used for adaptation to the diets and the last 12 d for sampling. Data showed that supplementation of PRHM decreased somatic cell score in the milk, indicating improved udder health of cows with high initial SCC, but not in cows with moderate SCC. Also, cows supplemented with PRHM consumed more feed DM, produced greater amounts of milk, and showed an improvement of feed utilization efficiency. However, these cows also lost more back-fat thickness during the experiment. Supplementation of PRHM increased fat- and energy-corrected milk yields in cows with high initial SCC, but not in cows with moderate SCC. Supplementation of PRHM decreased milk fat content, whereas other milk components were not affected by PRHM feeding. The PRHM supplementation decreased the acetate-to-propionate ratio in the rumen fluid, but increased ß-hydroxybutyrate and cholesterol concentration in the plasma, irrespective of the initial SCC level in the milk. Other plasma metabolites and liver enzymes were not affected by PRHM supplementation. Apparent nutrient digestibility did not differ among treatments. Overall, supplementation of PRHM seems to be an effective strategy to enhance performance and lower SCC, particularly in cows having high SCC levels in the milk. Further research is warranted to evaluate long-term effects of PRHM supplementation, especially with regard to metabolic health status and reproduction.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Lactação/efeitos dos fármacos , Leite/metabolismo , Preparações de Plantas/farmacologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Contagem de Células , Dieta/veterinária , Feminino , Fermentação , Glândulas Mamárias Animais/efeitos dos fármacos , Leite/citologia , Gravidez
14.
Animal ; 6(8): 1237-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23217227

RESUMO

This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.


Assuntos
Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Bovinos/fisiologia , Digestão/fisiologia , Ingestão de Alimentos/fisiologia , Medicago sativa , Tamanho da Partícula , Animais , Feminino , Fermentação , Hordeum , Irã (Geográfico) , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA