RESUMO
PURPOSE: Cell-based therapy by transplantation of progenitor cells has emerged as a promising development for organ repair, but non-invasive imaging approaches are required to monitor the fate of transplanted cells. Radioactive labelling with (111)In-oxine has been used in preclinical trials. This study aimed to validate (111)In-oxine labelling and subsequent in vivo and ex vivo detection of haematopoietic progenitor cells. METHODS: Murine haematopoietic progenitor cells (10(6), FDCPmix) were labelled with 0.1 MBq (low dose) or 1.0 MBq (high dose) (111)In-oxine and compared with unlabelled controls. Cellular retention of (111)In, viability and proliferation were determined up to 48 h after labelling. Labelled cells were injected into the cavity of the left or right cardiac ventricle in mice. Scintigraphic images were acquired 24 h later. Organ samples were harvested to determine the tissue-specific activity. RESULTS: Labelling efficiency was 75 +/- 14%. Cellular retention of incorporated (111)In after 48 h was 18 +/- 4%. Percentage viability after 48 h was 90 +/- 1% (control), 58 +/- 7% (low dose) and 48 +/- 8% (high dose) (p<0.0001). Numbers of viable cells after 48 h (normalised to 0 h) were 249 +/- 51% (control), 42 +/- 8% (low dose) and 32 +/- 5% (high dose) (p<0.0001). Cells accumulated in the spleen (86.6 +/- 27.0% ID/g), bone marrow (59.1 +/- 16.1% ID/g) and liver (30.3 +/- 9.5% ID/g) after left ventricular injection, whereas most of the cells were detected in the lungs (42.4 +/- 21.8% ID/g) after right ventricular injection. CONCLUSION: Radiolabelling of haematopoietic progenitor cells with (111)In-oxine is feasible, with high labelling efficiency but restricted stability. The integrity of labelled cells is significantly affected, with substantially reduced viability and proliferation and limited migration after systemic transfusion.