Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 122023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38149844

RESUMO

Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Doenças Mitocondriais , Humanos , Camundongos , Animais , Ubiquinona , Transporte de Elétrons , Diabetes Mellitus Tipo 2/metabolismo , Ceramidas/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Doenças Mitocondriais/patologia
2.
J Lipid Res ; 50(2): 243-55, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18809971

RESUMO

Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate vicinity.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Lisofosfolipídeos/metabolismo , Macrófagos/metabolismo , Monoglicerídeos/metabolismo , Animais , Células Cultivadas , Colesterol/metabolismo , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Lipossomos/metabolismo , Camundongos , Oxirredução , Fosfatidilgliceróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA