Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 105: 154330, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905566

RESUMO

BACKGROUND: The traditional Chinese medicine Gusuibu, the rhizome of Rhizoma Drynariae, is used to treat rheumatism and fractures. Naringenin (NAR) is an active ingredient in Gusuibu and has significant anti-inflammatory and antioxidant effects. However, the role of naringenin in iron overload-induced osteoarthritis (IOOA) is unknown. HYPOTHESIS: NAR reduces cartilage damage in IOOA. METHODS: The effects of NAR on the viability of IOOA chondrocytes and the synthesis ability of type II collagen were evaluated using cell counting kit (CCK8) and toluidine blue assays. To determine the mechanism of action and characteristics of NAR, the intracellular iron ion content, apoptosis rate, and mitochondrial membrane potential (MMP) change, and malondialdehyde (MDA) levels, as well as the degree of reactive oxygen species (ROS) and lipid hydroperoxide (LPO) accumulation in the cells were detected in vitro and verified using western blotting and quantitative real-time PCR (qRT-PCR). To verify the role of NAR in vivo, IOOA mice were established using iron dextran and surgery-induced destabilised medial meniscus. Changes in the articular cartilage and subchondral bone were examined using Safranin O-fast Green staining (S-O), haematoxylin-eosin staining (H&E), and microcomputed tomography (µCT). RESULTS: In vitro, NAR attenuated the impairment of cell viability, apoptosis, and MMP caused by ferric ammonium citrate and interleukin-1ß co-culture, increased the levels of MDA, reduced the expression of matrix metallopeptidase (MMP)3, MMP13, and Bax, and restored the expression of type II collagen (Col II). NAR showed a slight iron accumulation-reducing effect. NAR alleviated the accumulation of ROS and LPO in IOOA chondrocytes and upregulated antioxidant genes nuclear factor E2-related factor 2 (NRF2) and haem oxygenase 1 (HO-1). When ML385, a specific NRF-2 inhibitor, was added, the protective effect of NAR was significantly inhibited. In vivo, NAR reduced synovitis and attenuated cartilage damage and subchondral bone proliferation in IOOA mice. CONCLUSIONS: NAR can reduce oxidative stress through the NRF2-HO-1 pathway, alleviate cartilage damage under iron overload, and has the potential to treat IOOA.


Assuntos
Sobrecarga de Ferro , Osteoartrite , Animais , Antioxidantes , Apoptose , Colágeno Tipo II , Flavanonas , Ferro , Camundongos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Microtomografia por Raio-X
2.
Phytomedicine ; 94: 153810, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798519

RESUMO

BACKGROUND: Osteoporosis affects more than half the patients with type 2 diabetes mellitus (T2DM). Up to data, there is no effective clinical practice in managing type 2 diabetes osteoporosis (T2DOP) because of its complex pathogenesis. Gegen Qinlian Decoction (GQD) has been used for the long-term management of T2DM. However, the underlying mechanism of GQD in the treatment of T2DOP remains unknown. PURPOSE: To reveal the role of GQD in T2DOP and its potential therapeutic targets in the management of T2DOP. STUDY DESIGN: The effect of GQD on T2DOP was observed in db/db mice in four groups: model group, GQD low-dose group (GQD-L), GQD high-dose group (GQD-H), and metformin (positive control) group. C57BL/6J mice were used as the negative control group. METHODS: Quantitative phytochemical analysis of GQD was performed using high-performance liquid chromatography (HPLC). Micro-CT and hematoxylin-eosin (H&E) staining were used to evaluate bone histomorphometry. To screen for candidate targets of GQD, a cytokine antibody array was used, followed by bioinformatics analysis. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to determine expression levels. RESULTS: The major active components of GQD were confirmed by HPLC. Micro-CT and H&E staining showed that bone mass was significantly increased in the GQD-H group compared with the model group. Antibody arrays revealed that the expression of insulin-like growth factor binding protein 3 (IGFBP3) was elevated in the GQD-H group. The MAPK pathway was identified using bioinformatics analysis. Additionally, the levels of osteoclastogenesis-related genes, including cathepsin K (Ctsk), acid phosphatase 5 (Acp5), matrix metallopeptidase 9 (Mmp9), and ATPase H+ transporting V0 subunit D2 (Atp6v0d2) were significantly decreased in the GQD-H group. Compared with the model group, high-dosage GQD inhibited phosphorylation of extracellular signal-regulated kinases (ERKs) and P38 mitogen-activated protein kinase (MAPK) and the expression of c-Fos and nuclear factor of activated T cells 1 (NFATc1). CONCLUSION: GQD plays a protective role in T2DOP by upregulating IGFBP3 expression and downregulating the IGFBP3/MAPK/NFATc1 signaling pathway. IGFBP3 in serum may also be a novel biomarker in the treatment of T2DOP. Our current findings not only expand the application of GQD, but also provide a theoretical basis and guidance for T2DOP.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Animais , Citocinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC , Osteoporose/tratamento farmacológico , Proteínas Quinases , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA