Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 175(6): e14105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148234

RESUMO

Traits of leaves and fine roots are expected to predict the responses and adaptation of plants to their environments. Whether and how fine-root traits (FRTs) are associated with the allocation of foliar phosphorus (P) fractions of desert species in water- and P-poor environments, however, remains unclear. We exposed seedlings of Alhagi sparsifolia Shap. (hereafter Alhagi) treated with two water and four P-supply levels for three years in open-air pot experiments and measured the concentrations of foliar P fractions, foliar traits, and FRTs. The allocation proportion of foliar nucleic acid-P and acid phosphatase (APase) activity of fine roots were significantly higher by 45.94 and 53.3% in drought and no-P treatments relative to well-watered and high-P treatments, whereas foliar metabolic-P and structural-P were significantly lower by 3.70 and 5.26%. Allocation proportions of foliar structural-P and residual-P were positively correlated with fine-root P (FRP) concentration, but nucleic acid-P concentration was negatively correlated with FRP concentration. A tradeoff was found between the allocation proportion to all foliar P fractions relative to the FRP concentration, fine-root APase activity, and amounts of carboxylates, followed by fine-root morphological traits. The requirement for a link between the aboveground and underground tissues of Alhagi was generally higher in the drought than the well-watered treatment. Altering FRTs and the allocation of P to foliar nucleic acid-P were two coupled strategies of Alhagi under conditions of drought and/or low-P. These results advance our understanding of the strategies for allocating foliar P by mediating FRTs in drought and P-poor environments.


Assuntos
Fabaceae , Ácidos Nucleicos , Água , Fósforo , Raízes de Plantas/fisiologia , Fenótipo , Fabaceae/fisiologia
2.
Sci Total Environ ; 901: 166027, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541502

RESUMO

The soil organisms are extremely important for the land-based ecosystem. There is a growing interest in studying the variety and composition of the entire underground soil organism community at a large ecological scale. Soil organisms show different patterns in relation to soil physiochemical properties (SPPs) in various ecosystems. However, there is limited knowledge regarding their response to soil vertical profiles (SVPs) in monoculture of Alhagi sparsifolia, which is the primary shrub in the deserts of China, and is well-known for its contributions to sand dune stabilization, traditional Chinese medicine, and forage. Here, we investigated the population dynamics of soil bacteria, fungi, archaea, protists and metazoa across six different SVPs ranging from 0 to 100 cm in monoculture of A. sparsifolia, in its natural desert ecosystem. Our findings indicate that the soil biota communities displayed a declining pattern in the alpha diversity of bacteria, protists, and metazoa with an increase in soil depth. However, the opposite trend was observed for fungi and archaea. The beta diversity of soil biota was significantly affected by SVPs, particularly for metazoa, fungi and protists as revealed by Non-Metric Dimensional Scaling. The most prevalent soil bacterial, fungal, archaeal, protist, and metazoa classes were Actinobacteria, Sordariomycetes, Nitrososphaeria, Filosa-Sarcomonadea, and Nematoda, respectively. The correlation among vertical distribution of the most abundant biotic communities and variations in SPPs exhibited that the variations in total carbon (TC) and total nitrogen (TN) had the most significant influence on bacterial changes, while available potassium (AK) had an impact on fungi. Archaea were affected by TC and pH, protists by the C/N-Ratio and TP, and metazoa by TN, AK, and soil water capacity (SWC). Collectively, our findings provide a new perspective on the vertical distribution and distinct response patterns of soil biota in A. sparsifolia monoculture under natural desert ecosystem of China.

3.
J Plant Physiol ; 287: 154033, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37352725

RESUMO

There are many different planting methods for crops, however it is very important to improve the distribution ratio of elements in different organs of crops. Therefore, to understand the effect of different planting patterns on crop element balance, we selected Cyperus esculentus continuous cropping (CC) and C. esculentus - wheat rotation cropping (RC). The leaves, tubers, roots, and soil samples were taken at the mowing time (August 1st, on the 81st day after seed sowing; August 24th, on the 105th day after seed sowing; September 16th, on the 128th day after seed sowing). Results showed that CC and RC had significant effects on soil SO42- and Cl-. With the mowing time, the relative abundance of TN (total nitrogen) in tubers showed an increasing trend, the relative richness of TN in roots decreased, and the relative content of TN in leaves showed no change in the trend under the two planting modes. CC significantly increased the TN/TP (total phosphorus) of leaves, roots, and tubers. However, RC significantly increased the AN (available nitrogen)/AP (available phosphorus) of soil. The random forest analysis (RF) showed that abiotic factors contributed the most to TN/TK (total potassium) of roots, followed by TN/TK of tubers and TP/TK of roots. We found that abiotic factors had no significant impact on TP/TK of leaves and TN/TP of tubers. As expected, different planting patterns alter the plant's N (nitrogen)/P (phosphorus)/K (potassium), which in turn may modify N and P conservation strategies.


Assuntos
Cyperus , Solo , Nitrogênio , Fósforo , Potássio/análise , China
4.
BMC Plant Biol ; 23(1): 188, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032339

RESUMO

BACKGROUND: Phosphorus (P) deficiency in desert ecosystems is widespread. Generally, desert species may allocate an enormous proportion of photosynthetic carbon to their root systems to adjust their P-acquisition strategies. However, root P-acquisition strategies of deep-rooted desert species and the coordination response of root traits at different growth stages to differing soil P availability remains unclear. In this study, a two-year pot experiment was performed with four soil P-supply treatments (0, 0.9, 2.8, and 4.7 mg P kg-1 y-1 for the control, low-, intermediate-, and high-P supply, respectively). Root morphological and physiological traits of one- and two-year-old Alhagi sparsifolia seedlings were measured. RESULTS: For two-year-old seedlings, control or low-P supply significantly increased their leaf Mn concentration, coarse and fine roots' specific root length (SRL), specific root surface area (SRSA), and acid phosphatase activity (APase), but SRL and SRSA of one-year-old seedlings were higher under intermediate-P supply treatment. Root morphological traits were closely correlated with root APase activity and leaf Mn concentration. One-year-old seedlings had higher root APase activity, leaf Mn concentration, and root tissue density (RTD), but lower SRL and SRSA. Two-year-old seedlings had higher root APase activity, leaf Mn concentration, SRL and SRSA, but a lower RTD. Root APase activity was significantly positively correlated with the leaf Mn concentration, regardless of coarse or fine roots. Furthermore, root P concentrations of coarse and fine roots were driven by different root traits, with root biomass and carboxylates secretion particularly crucial root traits for the root P-acquisition of one- and two-year-old seedlings. CONCLUSIONS: Variation of root traits at different growth stages are coordinated with root P concentrations, indicating a trade-off between root traits and P-acquisition strategies. Alhagi sparsifolia developed two P-activation strategies, increasing P-mobilizing phosphatase activity and carboxylates secretion, to acclimate P-impoverished in soil. The adaptive variation of root traits at different growth stages and diversified P-activation strategies are conducive to maintaining the desert ecosystem productivity.


Assuntos
Ecossistema , Fabaceae , Fósforo , Solo , Raízes de Plantas , Plantas , Plântula , Ácidos Carboxílicos
5.
Sci Total Environ ; 877: 162949, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934931

RESUMO

Biochar has been proved to be an important soil amendment to alleviate soil phosphorus (P) in the paddy crops. However, the role of specially prepared biochar (N-enriched biochar) on the distribution and transformation of P soil in and rice leaves needs to be revealed. In this study, we studied in a field experiment the effects of two different levels of application of N-enriched biochar on the P fractions of soil and leaves. The results showed that: (1) in early rice, both rates of N-enriched biochar increased soil concentrations of labile inorganic P (Pi) (+51.5 % and +66.2 %, respectively) and labile organic P (Po) (+167 % and + 76.9 %, respectively) and moderately labile Pi (+37.8 % and +27.8 %, respectively) and decreased soil concentration of moderately labile Po (-17.0 % and -52.7 %, respectively) in the 0-15 cm layer. Soil total P concentration was positively correlated with soil labile P fractions and moderately labile Pi concentrations (p < 0.05); (2) in early and late rice, application of the biochar at 4 t ha-1 increased rice leaf concentration of inorganic (+13.3 % and +34.8 %, respectively), nucleic acid (+24.2 % and +13.0 %, respectively) (p < 0.05). The foliar inorganic and nucleic acid P concentrations were positively correlated with foliar total P concentrations; (3) redundancy analysis showed that with the application of N-enriched biochar, soil total carbon (C), nitrogen (N) and P concentration were important factors affecting the chemical forms of soil P, while soil organic matter, soil total P and leaf total P content were important factors affecting the chemical forms of leaf P; (4) allometric growth models showed that under the application of N-enriched biochar, 0-30 cm soil labile Po concentration was positively related to leaf concentration of nucleic acid P, 0-15 cm soil moderately labile Pi concentration was positively related to leaf concentration of inorganic P and nucleic acid P. Thus, this study provides evidence that N-enriched biochar increase the soil P-availability of labile and moderately labile P that in turn improved rice plants P use efficiency.


Assuntos
Oryza , Solo , Solo/química , Oryza/química , Fósforo/análise , Carvão Vegetal/química , China
6.
Environ Sci Pollut Res Int ; 30(15): 43962-43974, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36680725

RESUMO

Plant, soil, and microbial biomass ratios of carbon (C), nitrogen (N), and phosphorus (P) are crucial in maintaining stability of desert ecosystems. Nevertheless, variation in relations of elemental ratios between different life forms of plants and soil and microbial biomass in desert ecosystems remains unclear. In a hyper-arid desert ecosystem, C, N, and P concentrations and ratios were analyzed in the plant-soil-microbial biomass system of three perennial desert species (Alhagi sparsifolia Shap. [Herb, Fabaceae], Karelinia caspica Pall. [Herb, non-Fabaceae], and Tamarix ramosissima Ledeb. [Shrub]). Concentrations of N and P in Alhagi sparsifolia leaf, stem, and root were significantly greater than those in Karelinia caspica and Tamarix ramosissima, whereas plant C and soil organic C (SOC) were highest with Tamarix ramosissima. Alhagi sparsifolia and Tamarix ramosissima were P-limited, whereas Karelinia caspica was N-limited. According to correlation analysis, SOC rather than soil total P (STP) regulated plant N:P ratios, and microbial biomass C, N, and P rather than SOC, soil total N, and STP regulated plant C:N:P ratios. Soil water content also affected plant nutrient balance. Thus, in a hyper-arid desert ecosystem, the plant-soil-microbial biomass system and the balance of C, N, and P are closely related, and the role of soil microbial biomass in affecting plant nutrient balance should receive increased attention.


Assuntos
Ecossistema , Fabaceae , Biomassa , Solo , Fósforo/análise , Carbono/análise , Nitrogênio/análise , Plantas , Microbiologia do Solo , China
7.
Plants (Basel) ; 11(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432784

RESUMO

Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (H2O2) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change.

8.
Sci Total Environ ; 851(Pt 2): 158322, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037888

RESUMO

Agronomic management practices present an opportunity to improve the sustainability of crop production, including reductions of greenhouse gas emissions through impacts on soil organic carbon (SOC) dynamics. We investigated the impacts of contrasting application rates of nitrogen (N)-enriched biochar (4 and 8 t ha-1) on the concentrations of total and active SOC, microbial biomass carbon (MBC), soil aggregates, and the carbon (C) pool management index (CPMI) as an indicator of soil quality in tillering and mature subtropical early and late rice in China. Soil salinity and soil bulk density increased, and soil water content generally decreased under the application of N-enriched biochar at 4 t ha-1. Following the application of the biochar, there were greater soil concentrations of SOC and lower concentrations of dissolved organic-C and active labile organic­carbon, indicating reduced mineralization and enhanced stocks of stable-C. Biochar application (4 and 8 t ha-1) led to lower soil Ca-SOC concentrations and greater soil Fe(Al)-SOC concentrations. Concentrations of Fe(Al)-SOC were greater under the application of N-enriched biochar at 4 t ha-1, indicating the bonding capacity of iron­aluminum oxide and organic carbon provided by biochar improved levels of SOC fixation. The composition of soil aggregates under each treatment was mainly micro-aggregates (<0.25 mm). The greater soil content of macro-aggregates (>0.25 mm) increased under amendment with 4 t of biochar ha -1 and the greater SOC content led to greater soil aggregate stability. Levels of C pool activity, C pool index, and CPMI reduced following application of the biochar, while C pool activity index increased slightly, indicating an increase in soil quality. These results indicate that the application of N-enriched biochar during rice cultivation may lead to reductions in SOC mineralization and C emissions and increases in soil C sink capacity, due to greater SOC pool stability, thus improving the sustainability of paddy rice production.


Assuntos
Gases de Efeito Estufa , Oryza , Solo , Carbono/análise , Nitrogênio/análise , Carvão Vegetal/farmacologia , Água , Ferro , Óxido de Alumínio , Agricultura/métodos
9.
Cells ; 11(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326448

RESUMO

More efficient use of soil resources, such as nitrogen (N) and phosphorus (P), can improve plant community resistance and resilience against drought in arid and semi-arid lands. Intercropping of legume and non-legumes can be an effective practice for enhancing P mineralization uptake, and plant nutrient status. However, it remains unclear how intercropping systems using desert plant species impact soil-plant P fractions and how they affect N and water uptake capacity. Alhagi sparsifolia (a legume) and Karelinia caspia (a non-legume) are dominant plant species in the Taklamakan Desert in Xinjiang Province, China. However, there is a lack of knowledge of whether these species, when intercropped, can trigger synergistic processes and mechanisms that drive more efficient use of soil resources. Thus, in a field experiment over two years, we investigated the impact of monoculture and intercropping of these plant species on soil-plant P fractions and soil-plant nutrients. Both plant species' foliar nutrient (N, P, and K) concentrations were higher under monoculture than intercropping (except K in K. caspia). Nucleic acid P was higher in the monoculture plots of A. sparsifolia, consistent with higher soil labile P, while metabolic P was higher in monoculture K. caspia, associated with higher soil moderately labile Pi. However, both species had a higher residual P percentage in the intercropping system. Soils from monoculture and intercropped plots contained similar microbial biomass carbon (MBC), but lower microbial biomass N:microbial biomass phosphorus (MBN:MBP) ratio associated with reduced N-acetylglucosaminidase (NAG) activity in the intercropped soils. This, together with the high MBC:MBN ratio in intercropping and the lack of apparent general effects of intercropping on MBC:MBP, strongly suggest that intercropping improved microbe N- but not P-use efficiency. Interestingly, while EC and SWC were higher in the soil of the K. caspia monoculture plots, EC was significantly lower in the intercropped plots. Plants obtained better foliar nutrition and soil P mineralization in monocultures than in intercropping systems. The possible positive implications of intercropping for reducing soil salinization and improving soil water uptake and microbial N-use efficiency could have advantages in the long term and its utilization should be explored further in future studies.


Assuntos
Fabaceae , Fósforo , Agricultura , Solo , Água
10.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269700

RESUMO

To complete their life cycles, plants require several minerals that are found in soil. Plant growth and development can be affected by nutrient shortages or high nutrient availability. Several adaptations and evolutionary changes have enabled plants to cope with inappropriate growth conditions and low or high nutrient levels. MicroRNAs (miRNAs) have been recognized for transcript cleavage and translational reduction, and can be used for post-transcriptional regulation. Aside from regulating plant growth and development, miRNAs play a crucial role in regulating plant's adaptations to adverse environmental conditions. Additionally, miRNAs are involved in plants' sensory functions, nutrient uptake, long-distance root transport, and physiological functions related to nutrients. It may be possible to develop crops that can be cultivated in soils that are either deficient in nutrients or have extreme nutrient supplies by understanding how plant miRNAs are associated with nutrient stress. In this review, an overview is presented regarding recent advances in the understanding of plants' responses to nitrogen, phosphorus, potassium, sulfur, copper, iron, boron, magnesium, manganese, zinc, and calcium deficiencies via miRNA regulation. We conclude with future research directions emphasizing the modification of crops for improving future food security.


Assuntos
MicroRNAs , Produtos Agrícolas/genética , MicroRNAs/genética , Nutrientes , Fósforo , Desenvolvimento Vegetal , Raízes de Plantas/genética , Solo , Estresse Fisiológico
11.
PLoS One ; 15(12): e0242441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33264314

RESUMO

Camelina sativa L. is an oilseed crop with wide nutritional and industrial applications. Because of favorable agronomic characteristics of C. sativa in a water-limiting environment interest in its production has increased worldwide. In this study the effect of different irrigation regimes (I0 = three irrigations, I1 = two irrigations, I2 = one irrigation and I3 = one irrigation) on physio-biochemical responses and seed yield attributes of two C. sativa genotypes was explored under semi-arid conditions. Results indicated that maximum physio-biochemical activity, seed yield and oil contents appeared in genotype 7126 with three irrigations (I0). In contrast water deficit stress created by withholding irrigation (I1, I2 and I3) at different growth stages significantly reduced the physio-biochemical activity as well as yield responses in both C. sativa genotypes. Nonetheless the highest reduction in physio-biochemical and yield attributes were observed in genotype 8046 when irrigation was skipped at vegetative and flowering stages of crop (I3). In genotypic comparison, C. sativa genotype 7126 performed better than 8046 under all I1, I2 and I3 irrigation treatments. Because 7126 exhibited better maintenance of tissue water content, leaf gas exchange traits and chlorophyll pigment production, resulting in better seed yield and oil production. Findings of this study suggest that to achieve maximum yield potential in camelina three irrigations are needed under semi-arid conditions, however application of two irrigations one at flowering and second at silique development stage can ensure an economic seed yield and oil contents. Furthermore, genotype 7126 should be adopted for cultivation under water limited arid and semi-arid regions due to its better adaptability.


Assuntos
Irrigação Agrícola , Brassicaceae/fisiologia , Clima Desértico , Água , Análise de Variância , Brassicaceae/genética , Clorofila/metabolismo , Gases/metabolismo , Umidade , Osmose , Folhas de Planta/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Chuva , Sementes/metabolismo , Temperatura
12.
Plant Physiol Biochem ; 155: 828-841, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882620

RESUMO

Groundwater and its associated nutrients sustain the establishment and persistence of phreatophytes. Rapid root elongation immediately after germination is vital for desert species to access deep water sources to avoid water-deficit stress. However, the growth strategy and responses to nutrients and water of young phreatophyte seedlings before their roots reach the water table are poorly understood, especially in the scenarios of nitrogen (N) deposition and drought. We investigated how simulated N deposition and drought affect the plasticity of Alhagi sparsifolia seedlings by multiple eco-physiological mechanisms. Seedlings were planted under drought-stressed or well-watered conditions and subjected to various levels of N addition (0, 3.0, 6.0, or 9.0 gN·m-2 yr-1). The amounts of N and water independently or interactively affected the photosynthetic traits, drought tolerance characteristics, morphological traits, biomass allocation strategy, and nutrient distribution patterns among the plant organs. Moreover, changes mediated by N addition at the leaf level reflected the drought acclimation of the seedlings, which may be related to biomass and nutrient partitioning between organs. The roots were found to be more sensitive to variation of the N:phosphorus (P) ratio, and greater proportions of biomass, N, and P were allocated to resource-acquiring organs (i.e., leaves and fine roots) than to other tissues. A. sparsifolia adopts numerous strategies to tolerate drought, and additional N input was crucial to enhance the growth of drought-stressed A. sparsifolia, which was mainly attributable to its positive impact on the N and P uptake capacity mediated by increased biomass allocation to the roots.


Assuntos
Secas , Fabaceae/metabolismo , Nitrogênio/farmacologia , Plântula/metabolismo , Biomassa , Fósforo , Folhas de Planta , Raízes de Plantas , Água
13.
Ying Yong Sheng Tai Xue Bao ; 20(4): 894-900, 2009 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-19565772

RESUMO

Based on the 2005-2007 experimental data in Cele oasis in the southern margin of Tarim Basin of Xinjiang, the soil quality of four typical types of farmland with different utilization intensity, i.e., farmland with high input, farmland with normal input, newly reclaimed farmland, and farmland in oasis' interior, was analyzed and assessed by using sustainable yield index, soil improvement index, and soil quality synthesis index. Among the farmlands, there were significant differences in the contents of soil organic matter, available nitrogen, and available phosphorus. Newly reclaimed farmland had the lowest level of soil quality, while the farmland in oasis' interior had relatively higher soil quality. This study could help the reasonable exploitation and utilization of farmlands in Cele oasis, and the protection of local farmland eco-environment.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Clima Desértico , Solo/análise , China , Ecologia , Monitoramento Ambiental , Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise , Água/análise , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA