RESUMO
The hypothalamus plays a fundamental role in controlling lipid metabolism through neuroendocrine signals. However, there are currently no available drug targets in the hypothalamus that can effectively improve human lipid metabolism. In this study, we found that the antimalarial drug artemether (ART) significantly improved lipid metabolism by specifically inhibiting microglial activation in the hypothalamus of high-fat diet-induced mice. Mechanically, ART protects the thyrotropin-releasing hormone (TRH) neurons surrounding microglial cells from inflammatory damage and promotes the release of TRH into the peripheral circulation. As a result, TRH stimulates the synthesis of thyroid hormone (TH), leading to a significant improvement in hepatic lipid disorders. Subsequently, we employed a biotin-labeled ART chemical probe to identify the direct cellular target in microglial cells as protein kinase Cδ (PKCδ). Importantly, ART directly targeted PKCδ to inhibit its palmitoylation modification by blocking the binding of zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5), which resulted in the inhibition of downstream neuroinflammation signaling. In vivo, hypothalamic microglia-specific PKCδ knockdown markedly impaired ART-dependent neuroendocrine regulation and lipid metabolism improvement in mice. Furthermore, single-cell transcriptomics analysis in human brain tissues revealed that the level of PKCδ in microglia positively correlated with individuals who had hyperlipemia, thereby highlighting a clinical translational value. Collectively, these data suggest that the palmitoylation of microglial PKCδ in the hypothalamus plays a role in modulating peripheral lipid metabolism through hypothalamus-liver communication, and provides a promising therapeutic target for fatty liver diseases.
Assuntos
Lipoilação , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Microglia , Hipotálamo , Metabolismo dos Lipídeos , ArtemeterRESUMO
This study aimed to identify the direct pharmacological targets of Jingfang Granules in treating infectious pneumonia via "target fishing" strategy. Moreover, the molecular mechanism of Jingfang Granules in treating infectious pneumonia was also investigated based on target-related pharmacological signaling pathways. First, the Jingfang Granules extract-bound magnetic nanoparticles were prepared, which were incubated with lipopolysaccharide(LPS)-induced mouse pneumonia tissue lysates. The captured proteins were analyzed by high-resolution mass spectrometry(HRMS), and the target groups with specific binding to the Jingfang Granules extract were screened out. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was used to identify the target protein-associated signaling pathways. On this basis, the LPS-induced mouse model of infectious pneumonia was established. The possible biological functions of target proteins were verified by hematoxylin-eosin(HE) staining and immunohistochemical assay. A total of 186 Jingfang Granules-specific binding proteins were identified from lung tissues. KEGG pathway enrichment analysis showed that the target protein-associated signaling pathways mainly included Salmonella infection, vascular and pulmonary epithelial adherens junction, ribosomal viral replication, viral endocytosis, and fatty acid degradation. The target functions of Jingfang Granules were related to pulmonary inflammation and immunity, pulmonary energy metabolism, pulmonary microcirculation, and viral infection. Based on the in vivo inflammation model, Jingfang Granules significantly improved the alveolar structure of the LPS-induced mouse model of infectious pneumonia and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6). Meanwhile, Jingfang Gra-nules significantly up-regulated the expressions of key proteins of mitochondrial function COX â £ and ATP, microcirculation-related proteins CD31 and Occludin, and proteins associated with viral infection DDX21 and DDX3. These results suggest that Jingfang Gra-nules can inhibit lung inflammation, improve lung energy metabolism and pulmonary microcirculation, resist virus infection, thus playing a protective role in the lung. This study systematically explains the molecular mechanism of Jingfang Granules in the treatment of respiratory inflammation from the perspective of target-signaling pathway-pharmacological efficacy, thereby providing key information for clinical rational use of Jingfang Granules and expanding potential pharmacological application.
Assuntos
Anti-Infecciosos , Pneumonia , Animais , Camundongos , Lipopolissacarídeos , Inflamação , Bioensaio , Modelos Animais de Doenças , Interleucina-6RESUMO
This study identified the anti-depression targets of Kaixin San(KXS) in the brain tissue with "target fishing" strategy, and explored the target-associated pharmacological signaling pathways to reveal the anti-depression molecular mechanism of KXS. The Balb/c mouse model of depression was established by chronic unpredictable mild stress(CUMS) and the anti-depression effect of KXS was evaluated by forced swimming test and sucrose preference test. KXS active components were bonded to the benzophenone-modified magnetic nanoparticles by photocrosslinking reaction for capturing target proteins from cortex, thalamus and hippocampus of depressive mice. The target proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry(LC-MS/MS). The enrichment analysis on signaling pathways was performed by Cytoscape. The potential biological functions of targets were verified by immunohistochemistry and Western blot assay. The results showed that KXS significantly improved the behavioral indexes. There were 64, 91, and 44 potential targets of KXS identified in cortex, thalamus, and hippocampus, respectively, according to the target identification experiment. The functions of these targets were mainly associated with vasopressin-regulated water reabsorption, salmonella infection, thyroid hormone synthesis, and other signaling pathways. Besides, the results of immunohistochemistry and Western blot showed that KXS up-regulated the expressions of argipressine(AVP) in the cortex, heat shock protein 60(HSP60), cytochrome C oxidase 4(COX4), and thyrotropin-releasing hormone(TRH) in the thalamus, and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and nuclear factor kappa B(NF-κB) p65 in the thalamus. Therefore, KXS may exert anti-depression effect through regulating vasopressin signaling pathway in the cortex and inflammation, energy metabolism, and thyroid hormone signaling pathways in the thalamus, and the effect of KXS on hippocampus is not significant.
Assuntos
Depressão , Medicamentos de Ervas Chinesas , Animais , Camundongos , Cromatografia Líquida , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Hipocampo , Estresse Psicológico/tratamento farmacológico , Espectrometria de Massas em Tandem , Depressão/tratamento farmacológicoRESUMO
Neuroinflammation is a leading cause for neurological disorders. Carbazole alkaloids, isolated from the medicinal plants of Murraya species (Rutaceae), have exhibited wide pharmacological activities particularly for neuroinflammation. However, its underlying cellular targets and molecular mechanisms still remain unclear. In current study, we found that murrayafoline A (MA), a carbazole alkaloid obtained from Murraya tetramera, potently inhibited the production of neuroinflammation mediators, such as nitric oxide (NO), TNF-α, IL-6 and IL-1ß in LPS-induced BV-2 microglial cells. Then, we performed thermal proteome profiling (TPP) strategy to identify Specificity protein 1 (Sp1) as a potential cellular target of MA. Moreover, we performed surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DRATS) assays to confirm the direct interaction between MA and Sp1. Furthermore, we downregulated Sp1 expression in BV2 cells using siRNA transfection, and observed that Sp1 knockdown significantly antagonized MA-mediated inhibition of neuroinflammation mediator production. Meanwhile, Sp1 knockdown also markedly reversed MA-mediated inactivation of IKKß/NF-κB and p38/JNK MAPKs pathways. Finally, in vivo studies revealed that MA significantly suppressed the expression of Iba-1, TNF-α, and IL-6, while increased the number of Nissl bodies in the brains of LPS-induced mice. Taken together, our study demonstrated that MA exerted obvious anti-neuroinflammation effect by directly targeting Sp1, thereby inhibiting NF-κB and MAPK signaling pathways. Our findings also provided a promising direction of pharmacological targeting Sp1 for anti-neuroinflammation therapeutics as well as novel agent development.
Assuntos
Alcaloides , Anti-Inflamatórios , Carbazóis , Murraya , Doenças Neuroinflamatórias , Fator de Transcrição Sp1 , Animais , Camundongos , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carbazóis/metabolismo , Carbazóis/uso terapêutico , Interleucina-6/metabolismo , Lipopolissacarídeos , Microglia/efeitos dos fármacos , Murraya/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição Sp1/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológicoRESUMO
This study aims to identify the anti-pneumonia targets of Xiaoer Xiaoji Zhike Oral Liquid(XXZL) with "target fishing" strategy and investigate the related signaling pathways, thereby clarifying the anti-pneumonia mechanism of XXZL. To be specific, the magnetic nanoparticles cross-linked with XXZL extract were prepared based on the photochemical activity of benzophenone, which were then used to capture the target proteins from the lysate of tissue with lipopolysaccharide(LPS)-induced pneumonia in mice. Then, the target proteins were identified by liquid chromatography-tandem mass spectrometry(LC-MS/MS). The signaling pathways and interactions of target proteins were explored with KEGG and STRING analysis on Cytoscape, and the possible biological functions of the target proteins were verified by immunohistochemistry(IHC) and RT-PCR. The result showed that LC-MS/MS identified 62 potential anti-pneumonia targets of XXZL in the lungs. The targets were involved in Ras signaling pathway, mitophagy, leukocyte transendothelial migration, mitogen-activated protein kinase(MAPK) signaling pathway, platelet activation, and actomyosin structure organization, which were closely related to inflammation, pulmonary microcirculation, pulmonary fibrosis, and energy metabolism. XXZL up-regulated the content of CD31, and heat shock protein 60(HSP60) and ATP5 b mRNA expression, down-regulated interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), COL1 A1 content, and alleviated fibrosis, which suggested the obvious effects of XXZL such as anti-inflammation, pulmonary microcirculation improvement, pulmonary fibrosis inhibition, and energy metabolism regulation. This study explained the anti-pneumonia mechanism of XXZL from targets, which can serve as a reference for the clinical application of the prescription.
Assuntos
Pneumonia , Fibrose Pulmonar , Animais , Cromatografia Líquida , Medicamentos de Ervas Chinesas , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Carbon quantum dots (CQDs) offer huge potential due to their enzymatic properties as compared to natural enzymes. Thus, discovery of CQDs-based nanozymes with low toxicity from natural resources, especially daily food, implies a promising direction for exploring treatment strategies for human diseases. Here, we report a CQDs-based biocompatible nanozyme prepared from chlorogenic acid (ChA), a major bioactive natural product from coffee. We found that ChA CQDs exhibited obvious GSH oxidase-like activities and subsequently promoted cancer cell ferroptosis by perturbation of GPX4-catalyzed lipid repair systems. In vivo, ChA CQDs dramatically suppressed the tumor growth in HepG2-tumor-bearing mice with negligible side toxicity. Particularly, in hepatoma H22-bearing mice, ChA CQDs recruited massive tumor-infiltrating immune cells including T cells, NK cells, and macrophages, thereby converting "cold" to "hot" tumors for activating systemic antitumor immune responses. Taken together, our study suggests that natural product-derived CQDs from coffee can serve as biologically safe nanozymes for anticancer therapeutics and may aid the development of nanotechnology-based immunotherapeutic.
Assuntos
Ferroptose , Neoplasias , Pontos Quânticos , Humanos , Camundongos , Animais , Carbono , CaféRESUMO
Protopanaxadiol (PPD), a main ginseng metabolite, exerts powerful anticancer effects against multiple types of cancer; however, its cellular targets remain elusive. Here, we synthesized a cell-permeable PPD probe via introducing a bifunctional alkyne-containing diazirine photo-crosslinker and performed a photoaffinity labeling-based chemoproteomic study. We identified retinoblastoma binding protein 4 (RBBP4), a chromatin remodeling factor, as an essential cellular target of PPD in HCT116 colorectal cancer cells. PPD significantly decreased RBBP4-dependent trimethylation at lysine 27 of histone H3 (H3K27me3), a crucial epigenetic marker that correlates with histologic signs of colorectal cancer aggressiveness, and PPD inhibition of proliferation and migration of HCT116 cells was antagonized by RBBP4 RNA silencing. Collectively, our study highlights a previously undisclosed anti-colorectal cancer cellular target of the ginseng metabolite and advances the fundamental understanding of RBBP4 functions via a chemical biology strategy.
Assuntos
Neoplasias Colorretais , Panax , Sapogeninas , Neoplasias Colorretais/tratamento farmacológico , Células HCT116 , Humanos , Panax/química , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Sapogeninas/farmacologia , Fatores de Transcrição/metabolismoRESUMO
Clausena lenis Drake (C. lenis) is a folk medicinal herb to treat influenza, colds, bronchitis, and malaria. The 95% and 50% ethanol extract of C. lenis showed significant nitric oxide (NO) inhibition activity in BV-2 microglial cells stimulated by lipopolysaccharide (LPS). Bio-guided isolation of the active extract afforded five new compounds, including a chlorine-containing furoquinoline racemate, (±)-claulenine A (1), an amide alkaloid, claulenine B (2), a prenylated coumarin, claulenin A (3), a furocoumarin glucoside, clauleside A (4), and a multi-prenylated p-hydroxybenzaldehyde, claulenin B (5), along with 33 known ones. Their structures were determined via spectroscopic methods, and the absolute configurations of new compounds were assigned via the electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analysis. Compounds 2, 23, 27, 28, 33, and 34 showed potent anti-neuroinflammatory effects on LPS-induced NO production in BV-2 microglial cells, with IC50 values in the range of 17.6-40.9 µM. The possible mechanism was deduced to interact with iNOS through molecular docking.
Assuntos
Clausena , Linhagem Celular , Microglia , Simulação de Acoplamento Molecular , Óxido NítricoRESUMO
BACKGROUND: Sacha inchi (Plukenetia volubilis L.) tea has been used as an adjuvant treatment for diabetes in Pu'er, in the Yunnan province of China. The effects of sacha inchi tea on diabetes and the underlying mechanisms remain unknown. This study was conducted to investigate the influence of a water extract of sacha inchi (P. volubilis L.) leaves (PWE) on hypoglycemic activity and gut microbiota composition in mice with streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM). During the 6 weeks of the study, T1DM mice were administered PWE intragastrically at 400 mg kg-1 body weight (BW) per day. RESULTS: Treatment with PWE reduced excessive loss of BW and excessive intake of food. It significantly decreased blood glucose levels and improved oral glucose tolerance. The treatment caused protective histopathological transformations in sections of the pancreas, leading to decreased insulin resistance and improved insulin sensitivity. Treatment with PWE also significantly ameliorated disorders of the gut microbiota structure and increased the richness and diversity of intestinal microbial species in T1DM mice. At the genus level, the populations of several crucial bacteria, such as Akkermansia, Parabacteroides, and Muribaculum increased in the PWE treatment group but the abundance of Ruminiclostridium and Oscillibacter decreased. CONCLUSIONS: Treatment with PWE can ameliorate hyperglycemic symptoms in STZ-induced T1DM mice, and the anti-diabetic effect of PWE was related to the amelioration of gut microbial structural disorder and the enrichment of functional bacteria. © 2022 Society of Chemical Industry.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Euphorbiaceae , Microbioma Gastrointestinal , Animais , China , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Euphorbiaceae/química , Camundongos , Extratos Vegetais , Óleos de Plantas/química , Estreptozocina , CháRESUMO
Three new coumarins, integmarins A-C (1-3), and a new coumarin glycoside, integmaside A (4) were isolated from the leaves and stems of Micromelum integerrimum. Their structures were elucidated on the basis of 1D and 2D NMR and MS data, and their absolute configurations were assigned according to the ECD data of the in situ formed transition metal complexes and comparison of experimental and calculated ECD data. Compounds 1 and 2 are two rare coumarins with butyl and propyl moieties at the C-6 position; compound 3 is a novel coumarin with a highly oxidized prenyl group, and compound 4 is a rare bisdihydrofuranocoumarin glycoside.
Assuntos
Cumarínicos/química , Glicosídeos , Rutaceae , Cumarínicos/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Estrutura Molecular , Folhas de Planta/química , Caules de Planta/química , Rutaceae/químicaRESUMO
Two previously undescribed dibenzocyclooctadiene lignans, named sieverlignans D-E (1-2), as well as eight known ones (3-10), were isolated from the aerial parts of Artemisia sieversiana. Their structures were elucidated from extensive spectroscopic analysis, including HRMS, NMR and electronic circular dichroism (ECD) experiments. This study is the first to report dibenzocyclooctadiene lignans in the genus Artemisia and this plant. All the compounds were evaluated for their anti-neuroinflammatory activities on the lipopolysaccharides (LPS)-induced nitric oxide production in BV-2 murine microglial cells. Compounds 1 and 6 exhibited the moderate activities with their IC50 values of 47.7 and 21.9 µM, compared to a positive control quercetin with the IC50 value of 16.0 µM.
Assuntos
Artemisia , Lignanas , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Octanos , Lignanas/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido NítricoRESUMO
A total of 49 limonoids derivatives were rapidly identified by UNIFI software and three new limonoids derivatives, named dasycarinone (1, DAS), isodictamdiol C (2) and dasycarinone A (3), along with nineteen known compounds, were isolated from the root bark of Dictamnus dasycarpus, named as "Baixianpi" in Chinese. Their structures were elucidated on the basis of spectroscopic data (UV, IR, HR-ESI-MS, NMR, CD spectra and OR). All the compounds were tested for anti-inflammatory activities by suppressing the nitric oxide (NO) production in lipopolysaccharide (LPS) induced BV-2 cells. DAS exhibited a strong anti-inflammatory activity with IC50 value of 1.8 µM. Nuclear Factor kappa B (NF-κB) luciferase assay and enzyme-linked immune sorbent assay indicated that DAS can suppress the release of inflammatory cytokines such as Tumor Necrosis Factor α (TNF-α), interleukin 6 (IL-6) via inactivating NF-κB signaling pathways. Moreover, we found that anti-inflammatory activities of obacunone-class are better than those of limonin-class by analyzing structure-activity relationship. Our results suggested that obacunone derivatives play an important role on anti-inflammation of Baixianpi. As a representative among them, DAS showed a strong anti-inflammatory activity via suppressing NF-κB signaling pathways.
Assuntos
Dictamnus , Limoninas , Anti-Inflamatórios/farmacologia , Limoninas/farmacologia , Lipopolissacarídeos , Casca de Planta , Extratos Vegetais/farmacologiaRESUMO
"Target fishing" strategy was used to investigate the direct targets and mechanism of Shouhui Tongbian Capsules on relaxing bowel. Magnetic beads cross-linked with the chemical constituents from Shouhui Tongbian Capsules were prepared. The potential target proteins were captured from the total protein lysates of rat intestine using the beads. The captured proteins were further identified by LC-MS/MS, and the associated pathways were analyzed by Cytoscape. RESULTS:: showed that 138 potential target proteins were identified, which were involved in eight signaling pathways, including tricarboxylic acid cycle, pyrimidine metabolism, sulfur metabolism, fatty acid degradation, alanine/aspartate/glutamate metabolism, arginine/proline metabolism, valine/leucine/isoleucine degradation, and ß-alanine metabolism. Taken together, Shouhui Tongbian Capsules may exert relaxing bowel effect by acting on multiple signaling pathways to promote intestinal gurgling, inhibit inflammation, as well as improve intestinal barrier function, intestinal water secretion, and intestinal flora.
Assuntos
Intestinos , Espectrometria de Massas em Tandem , Animais , Cápsulas , Cromatografia Líquida , Leucina , RatosRESUMO
Shouhui Tongbian Capsules was used to explore the therapeutic effect and potential mechanism on slow transit constipation model mice induced by loperamide hydrochloride. In the experiment, loperamide hydrochloride-induced ICR mice were used as the model of slow transit constipation. Fifty ICR mice were divided into the blank group, model group and high, medium and low dose groups of Shouhui Tongbian Capsules extract(100, 200 and 400 mg·kg~(-1)). The model group and the administration groups were then modeled using loperamide hydrochloride intragastrically to obtain slow transit constipation. After successful modeling, high, medium and low doses of drugs were given to each drug group by intragastric administration. After 14 days of administration, the first defecation time, 6 h defecation grain number, 6 h defecation wet weight and dry weight, black feces discharged within 6 h and the fecal water content were measured. Intestinal tissues were taken for c-Kit and SCF immunohistochemical sections to detect the expression of c-Kit and SCF in the blank group, model group and high, medium and low dose groups of the medicinal extract of Shouhui Tongbian Capsules. The tissue changes in the intestinal wall of mice were detected by HE staining. At the same time, partial intestinal tissues were taken to test the activity of ATP synthase and isocitrate dehydrogenase in intestinal tissues of mice. RESULTS:: showed that Shouhui Tongbian Capsules effectively improved the symptoms of slow transit constipation in ICR mice and promoted intestinal movement. Shouhui Tongbian Capsules obviously shortened the time of discharging black stool for the first time, improved the intestinal propulsion rate, increased the water content and amount of feces, and improved the constipation symptoms. Mechanism study revealed that Shouhui Tongbian Capsules increased ATP synthase activity and mitochondrial isocitrate dehydrogenase activity in intestinal tissue, and up-regulated c-Kit/SCF signaling pathway to promote interstitial Cajal cells proliferation, intestinal nerve transmission, intestinal motility and transport capacity.
Assuntos
Constipação Intestinal , Trânsito Gastrointestinal , Animais , Cápsulas , Constipação Intestinal/tratamento farmacológico , Loperamida , Camundongos , Camundongos Endogâmicos ICRRESUMO
Mechanism study was performed to explore how Shouhui Tongbian Capsules promotes energy metabolism of gastrointestinal stromal cells. In this study, gastrointestinal stromal cells line GIST-882 was used as the model to explore energy metabolism regulation effects of Shouhui Tongbian Capsules extract(10, 20, 50 and 100 µg·mL~(-1)) by measuring the cell proliferation, ATP level, mitochondrial membrane potential, and mitochondrial isocitrate dehydrogenase activity. Meanwhile, Western blot was used to detect the proteins expression of SCF/c-Kit and CDK2/cyclin A signaling pathways. Our results showed that Shouhui Tongbian Capsules promoted cell proliferation and increased ATP level of gastrointestinal stromal cells. In addition, Shouhui Tongbian Capsules obviously improved mitochondrial structural integrity, and increased mitochondrial membrane potential in GIST-882 cells. Mechanism study revealed that Shouhui Tongbian Capsules increased mitochondrial isocitrate dehydrogenase activity and up-regulated the proteins expression of SCF/c-Kit and CDK2/cyclin A signaling pathways. Collectively, our study indicated that Shouhui Tongbian Capsules promoted the energy metabolism for gastrointestinal stromal cells proliferation by activating mitochondrial isocitrate dehydrogenase to induce ATP production, as well as activating SCF/c-Kit and CDK2/cyclin A signaling pathways.
Assuntos
Tumores do Estroma Gastrointestinal , Cápsulas , Linhagem Celular Tumoral , Metabolismo Energético , Humanos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células Estromais/metabolismoRESUMO
Two new ditetrahydrofuran lignans, named sieverlignans A and B (1 and 2), together with six known ones (3-8), were isolated from the aerial parts of Artemisia sieversiana. Their structures were established on the basis of spectroscopic analysis including HRMS, NMR spectra and circular dichroism experiments. All the compounds were evaluated for their anti-neuroinflammatory effects on the lipopolysaccharides (LPS)-induced nitric oxide production in BV-2 murine microglial cells. Compound 2 exhibited the significant activity with its IC50 value of 11.9 ± 0.8 µM, respectively, compared to a positive control quercetin with its IC50 value of 16.0 ± 1.1 µM.
Assuntos
Artemisia , Lignanas , Animais , Lignanas/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia , Estrutura Molecular , Óxido NítricoRESUMO
Endoplasmic reticulum (ER) stress has been considered as a promising strategy in developing novel therapeutic agents for cardiovascular diseases through inhibiting cardiomyocyte apoptosis. Protocatechualdehyde (PCA) is a natural phenolic compound from medicinal plant Salvia miltiorrhiza with cardiomyocyte protection. However, the potential mechanism of PCA on cardiovascular ischemic injury is largely unexplored. Here, we found that PCA exerted markedly anti-apoptotic effect in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced H9c2 cells (Rat embryonic ventricular H9c2 cardiomyocytes), which was detected by 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH), Hoechst 33258 and acridine orange/ethidium bromide (AO/EB) assays. PCA also obviously protected cardiomyocytes in myocardial fibrosis model of mice, which was determined by hematoxylin-eosin (HE) staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining. Transcriptomics coupled with bioinformatics analysis revealed a complex pharmacological signaling network especially for PCA-mediated ER stress on cardiomyocytes. Further mechanism study suggested that PCA suppressed ER stress via inhibiting protein kinase R-like ER kinase (PERK), inositol-requiring enzyme1α (IRE1α), and transcription factor 6α (ATF6α) signaling pathway through Western blot, DIOC6 and ER-Tracker Red staining, leading to a protective effect against ER stress-mediated cardiomyocyte apoptosis. Taken together, our observations suggest that PCA is a major component from Salvia miltiorrhiza against cardiovascular ischemic injury by suppressing ER stress-associated PERK, IRE1α and ATF6α signaling pathways.
Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Benzaldeídos/farmacologia , Catecóis/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Endorribonucleases/genética , Fibrose , Glucose/deficiência , Masculino , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/genética , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transcriptoma , eIF-2 Quinase/genéticaRESUMO
OBJECTIVE: To test the effect of Banxia Xiexin Decoction (, BXD) on the contraction and relaxation of gastric smooth muscle (SM) in diabetic gastroparesis (DGP) model rats, and to explore the mechanism of BXD in the prevention and treatment of DGP through experiments of signal pathway both in vivo and in vitro. METHODS: Sixty Sprague-Dawley rats were divided into 6 groups according to a random number table: control group, model group, high-, medium- and low-dose BXD groups (9.2, 4.6 and 1.8 g/(kg·d), respectively), and domperidone group (10 mg/(kg·d)), 10 rats per group. DGP model was established initially by a single intraperitoneal injection of streptozotocin (STZ), and was confirmed by recording gastric emptying, intestinal transport velocity and gastric myoelectric activity of rats after 2 months. Each group was treated with a corresponding drug for 4 weeks. The mRNA and protein expressions of phospholipase C (PLC), inositol triphosphate (IP3), neuronal nitric oxide synthase (nNOS), and cyclic guanosine monophosphate (cGMP) dependent protein kinase G (PKG) were detected by reverse transcription-polymerase chain reaction and Western blot, respectively, while nitric oxide (NO) and cGMP expressions were detected by enzyme-linked immunosorbent assay. Gastric tissues were obtained from rats for primary cell culture preparation. Gastric SM cells were treated with 0.8 µmol/L of STZ or STZ plus 1,000, 500 and 200 µg/mL of BXD or STZ plus 2.5 µmol/mL of domperidone for 24, 48, 72 or 96 h, respectively. The length of gastric SM cells and intracellular Ca2+ concentration ([Ca2+]i) before and after BXD treatment was measured. RESULTS: Compared with the model group, high- and medium-dose BXD and domperidone significantly increased the expressions of PLC, IP3, NO, nNOS, cGMP and PKG in rat's gastric tissue (P<0.01). Gastric SM cells treated with BXD showed a time- and dose-dependent increase in cell viability (P<0.01). The treatment with high- and medium-dose BXD and domperidone inhibited the increase in gastric SM cells length and increased [Ca2+]i compared with the model cells (P<0.01). CONCLUSIONS: Treatment with high- and medium-dose BXD significantly attenuated STZ-induced experimental DGP in rats. The therapeutic effect of BXD on DGP rats might be associated with the PLC-IP3-Ca2+/NO-cGMP-PKG signal pathway.
Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Gastroparesia/tratamento farmacológico , Fosfatos de Inositol/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Sinalização do Cálcio , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , EstreptozocinaRESUMO
Histone post-translational modifications (PTMs) have been shown to be highly associated with inflammation response, suggesting a therapeutic significance of pharmacologically editing histone PTMs. Currently reported anti-inflammation small-molecules mainly target histone PTMs writers or erasers for methylation, phosphorylation, and acetylation. Although histone chaperones also appear to be involved in inflammation signaling cascades, whether small-molecules could target histone chaperones to show anti-inflammation effects has still been rarely discovered. In this study, natural product artone was found to show obvious inhibitory effects on microglia-mediated neuroinflammation by directly targeting ASF1a, which is a histone-remodeling chaperone. Mechanism study revealed that artone modulated histone H3 PTMs profile by down-regulating acetylation and trimethylation modification levels at sites K4, K9, K18 and K27. Artone-dependent regulations on PTMs further caused an effective inhibition on transcription factor NF-κB assembling to promoters of pro-inflammatory cytokine genes including Tnf-α, Il-6 and Rgs3, indicating a distinctive anti-neuroinflammation mechanism. Collectively, we reported artone as the first small-molecule targeting histone-remodeling chaperone ASF1a for anti-neuroinflammation. Moreover, these findings broaden our knowledge of histone chaperone as a druggable target protein for neuroinflammation inhibition, and open a new avenue to novel therapy strategy for inflammation-associated neurological disorders.
Assuntos
Artemisia/química , Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Chaperonas Moleculares/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Acetilação/efeitos dos fármacos , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inflamação/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Microglia/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Aglaia odorata Lour. is a traditional Chinese medicinal plant possessing properties of improving blood circulation, and it is widely used in the treatment of dizziness, traumatic injuries and bruises. AIM OF STUDY: In this study, we are aimed to investigate the cerebral protection effect of the extracts from leaves of Aglaia odorata Lour. (ELA) and the potential mechanism in vivo and in vitro. MATERIALS AND METHODS: The therapeutic effect of ELA on ischemic cerebral stroke was measured on a middle cerebral artery occlusion (MCAO) rat model. Protective effect of ELA on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12â¯cells was measured by MTT assay. The apoptotic cells were observed by Hoechst 33258 staining and acridine orange/ethidium bromide double staining assay. Mitochondria were observed by Mitotracker staining assay. The mitochondrial membrane potential was determined by JC-1 staining assay. Western blot was used to investigate the effects of ELA on apoptosis-related proteins. RESULTS: We showed that ELA was an effective neuroprotective agent. In vivo experiments, ELA exerted significant protective effect on MCAO model. TTC staining showed that ELA could reduce cerebral infarction area against MCAO insult. HE and Nissl's staining indicated that ELA could reverse the damage of cortex and hippocampus caused by MCAO. In vitro experiments, ELA showed significant protective effect on OGD/R-induced PC12â¯cells by reducing the number of apoptotic cells, increasing mitochondrial membrane potential, and reducing superoxide aggregation, further suppressing mitochondrial caspase-9/3 apoptosis pathway. Moreover, protective effect of ELA on mitochondrial function may be exerted by inhibiting p53/Puma signal pathway. CONCLUSION: Our results suggest that ELA exerts a marked neuroprotective effect against cerebral ischemia potentially via suppressing p53/Puma-mediated mitochondrial caspase-9/3 apoptosis pathway.