Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 132, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310289

RESUMO

BACKGROUND: The current precision medicine relies on biomarkers, which are mainly obtained through next-generation sequencing (NGS). However, this model failed to find effective drugs for most cancer patients. This study tried to combine liquid biopsy with functional drug tests using organoid models to find potential drugs for cancer patients. METHODS: Colorectal cancer (CRC) patients were prospectively enrolled and blood samples were collected from patients before the start of treatment. Targeted deep sequencing of cfDNA samples was performed using a 14-gene panel. Gastrointestinal (GI) cancer organoids were established and PI3K and mTOR inhibitors were evaluated on organoid models. RESULTS: A total of 195 mutations were detected across 58 cfDNA samples. The most frequently mutated genes were KRAS, TP53, PIK3CA, and BRAF, all of which exhibited higher mutation rates than tissue biopsy. Although 81% of variants had an allele frequency of less than 1%, certain mutations in KRAS, TP53, and SMAD4 had high allele frequencies exceeding 10%. Notably, among the seven patients with high allele frequency mutations, six had metastatic tumors, indicating that a high allele frequency of ctDNA could potentially serve as a biomarker of later-stage cancer. A high rate of PIK3CA mutation (31 out of 67, or 46.3%) was discovered in CRC patients, suggesting possible tumor progression mechanisms and targeted therapy opportunities. To evaluate the value of anti PI3K strategy in GI cancer, different lines of GI cancer organoids were established. The organoids recapitulated the morphologies of the original tumors. Organoids were generally insensitive to PI3K inhibitors. However, CRC-3 and GC-4 showed response to mTOR inhibitor Everolimus, and GC-3 was sensitive to PI3Kδ inhibitor Idelalisib. The CRC organoid with a PIK3CA mutation showed greater sensitivity to the PI3K inhibitor Alpelisib than wildtype organoids, suggesting potential treatment options for the corresponding patients. CONCLUSION: Liquid biopsy holds significant promise for improving precision treatment and tumor prognosis in colorectal cancer patients. The combination of biomarker-based drug prediction with organoid-based functional drug sensitivity assay may lead to more effective cancer treatment.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Avaliação Pré-Clínica de Medicamentos , Proteínas Proto-Oncogênicas p21(ras)/genética , Detecção Precoce de Câncer , Biópsia Líquida , Inibidores de Fosfoinositídeo-3 Quinase , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação/genética
2.
Adv Sci (Weinh) ; 10(27): e2301190, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37469018

RESUMO

RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.


Assuntos
Transdução de Sinais , Neoplasias Gástricas , Humanos , Fosfatidilinositol 3-Quinases , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Gástricas/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Small Methods ; 6(3): e2101391, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107224

RESUMO

Single-cell encapsulation is an emerging technology to endow cells with various functions, of which developing new applications in vivo is in high demand. Currently, metal-organic frameworks (MOFs) that are used as nanometric shells to coat living cells, however, have not realized cell-selective encapsulation. Here, a biocompatible and selective cell encapsulation strategy based on precursor-functionalized nucleolin aptamer and in situ MOF mineralization on the aptamer-identified cancer cell surface are developed. After MOF coating, the encapsulated cancer cells undergo immunogenic cell death, which is found associated with the changed cell stiffness (indicated by Young's modulus). The immunogenic dead cancer cells are used as whole-cell cancer vaccines (WCCVs), forming the integral WCCV-in-shell structure with enhanced immunogenicity ascribing from the surface-exposed calreticulin to promote dendritic cell recruitment, antigen presentation, and T-cell activation. The major activation pathways in the immune response are identified including tumor necrosis factor signaling pathway, cytokine-cytokine receptor interaction, and Toll-like receptor signaling pathway, suggesting the potential adjuvant effect of the MOF shells. After vaccination, WCCV-in-shell shows much better tumor immunoprophylaxis than either the imperfectly coated cancer cells or the traditional WCCV. This strategy is promising for the universal and facile development of novel whole-cell vaccines.


Assuntos
Vacinas Anticâncer , Estruturas Metalorgânicas , Neoplasias , Vacinas Anticâncer/uso terapêutico , Encapsulamento de Células , Humanos , Estruturas Metalorgânicas/química , Neoplasias/tratamento farmacológico , Oligonucleotídeos/uso terapêutico
4.
Nanoscale ; 10(18): 8536-8546, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29694478

RESUMO

Multi-layered single-walled carbon nanotubes, termed SWNT@BSA@Au-S-PEG-FA@DOX, which integrate photothermal therapy with small molecule drug delivery, were prepared using a facile layer-by-layer assembly process. Oxidized and cut single-walled carbon nanotubes (SWNTs) were coated with bovine serum albumin (BSA) to provide abundant active sites for the nucleation of Au seeds, which are subsequently converted into gold nanoparticles (Au NPs) by in situ reduction. The resulting SWNT@BSA@Au material exhibits ideal photothermal properties. Further modification of the nanomaterial with folic acid terminated-polyglycol (FA-PEG-SH) and subsequent loading with doxorubicin (DOX) afford the SWNT@BSA@Au-S-PEG-FA@DOX. The FA terminated PEG endows the material with high water-dispersibility, biocompatibility and cancer cell selectivity. A high drug loading ratio for DOX of up to 590% was achieved, with the drug release being pH and temperature dependent, adding to the selectivity of the system. High efficacy of the SWNT@BSA@Au-S-PEG-FA@DOX material, when combined with photothermal therapy (irradiation of the tumor with an 808 nm laser, 1 W cm-2 for 5 min, 24 h after systemic injection of the nanomedicine), was demonstrated in vivo, resulting in complete tumor eradication. Remarkably, the side effects are negligible with only minor damage to normal tissues including the liver and kidneys being observed.


Assuntos
Doxorrubicina/administração & dosagem , Portadores de Fármacos , Nanotubos de Carbono , Neoplasias Experimentais/tratamento farmacológico , Animais , Liberação Controlada de Fármacos , Feminino , Ácido Fólico , Ouro , Células HeLa , Humanos , Terapia com Luz de Baixa Intensidade , Nanopartículas Metálicas , Camundongos Nus , Polietilenoglicóis , Soroalbumina Bovina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA