Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118403, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364494

RESUMO

Stormwater treatment and reuse can alleviate water pollution and scarcity while current sand filtration systems showed low treatment performance for stormwater. For enhancing E. coli removal in stormwater, this study applied the bermudagrass-derived activated biochars (BCs) in the BC-sand filtration systems for E. coli removal. Compared with the pristine BC (without activation), the FeCl3 and NaOH activations increased the BC carbon content from 68.02% to 71.60% and 81.22% while E. coli removal efficiency increased from 77.60% to 81.16% and 98.68%, respectively. In all BCs, the BC carbon content showed a highly positive correlation with E. coli removal efficiency. The FeCl3 and NaOH activations also led to the enhancement of roughness of BC surface for enhancing E. coli removal by straining (physical entrapment). The main mechanisms for E. coli removal by BC-amended sand column were found to be hydrophobic attraction and straining. Additionally, under 105-107 CFU/mL of E. coli, final E. coli concentration in NaOH activated BC (NaOH-BC) column was one order of magnitude lower than those in pristine BC and FeCl3 activated BC (Fe-BC) columns. The presence of humic acid remarkably lowered the E. coli removal efficiency from 77.60% to 45.38% in pristine BC-amended sand column while slightly lowering the E. coli removal efficiencies from 81.16% and 98.68% to 68.65% and 92.57% in Fe-BC and NaOH-BC-amended sand columns, respectively. Moreover, compared to pristine BC, the activated BCs (Fe-BC and NaOH-BC) also resulted in the lower antibiotics (tetracycline and sulfamethoxazole) concentrations in the effluents from the BC-amended sand columns. Therefore, for the first time, this study indicated NaOH-BC showed high potential for effective treatment of E. coli from stormwater by the BC-amended sand filtration system compared with pristine BC and Fe-BC.


Assuntos
Areia , Purificação da Água , Escherichia coli , Cynodon , Purificação da Água/métodos , Abastecimento de Água , Chuva , Hidróxido de Sódio , Carvão Vegetal/química , Filtração/métodos
2.
Chemosphere ; 306: 135554, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35780988

RESUMO

One-step FeCl3-mediated pyrolysis/activation was developed for preparation of bermudagrass (BG)-derived FeCl3-activated biochars (FA-BCs) from bermudagrass (BG) as a heterogenous Fenton catalyst for heterogeneous Fenton oxidation of sulfamethoxazole (SMX) in water. The FA-BC prepared at the FeCl3 to BG mass ratio of 2 (FA-BC) exhibited higher adsorption and Fenton oxidation of SMX than other mass ratios of the FeCl3 to BG. FA-BC presented the great surface area (835 m2/g) and high SMX adsorption capacity (195 mg SMX/g BC), which was higher than various BCs in the previous studies. Additionally, the surface of FA-BC was attached with Fe2O3, Fe0, and Fe3O4 after the FeCl3 activation. Under the optimal conditions for Fenton reaction (SMX concentration, 100 mg/L; loading of FA-BC, 0.1 g/L; dose of H2O2, 200 mg/L; temperature, 20 °C; pH 3; reaction time, 12 h), SMX and COD removal efficiencies reached 99.94% and 65.19%, respectively. Increasing reaction temperature from 20 to 50 °C significantly improved the SMX oxidation rate from 0.46 to 1.04 h-1. The HO· radicals were proved to play a major role during the Fenton oxidation of SMX. In addition, the SMX solution treated by Fenton oxidation showed much less toxicity than the initial SMX solution. Additionally, the reusability tests of FA-BC indicated that 89.58% removal efficiency for SMX was still achieved after 3 cycles of Fenton oxidation under the optimal conditions. Furthermore, FA-BC can also efficiently remove SMX from the dairy wastewater. Therefore, FA-BC showed a high potential to eliminate aqueous SMX through adsorption and heterogeneous Fenton oxidation.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Antibacterianos , Carvão Vegetal , Cynodon , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 839: 156159, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609690

RESUMO

To prevent possible secondary pollution from phosphorus-loaded biochar (BC) in agricultural systems, this study investigated the sustainable use of Ca(OH)2 modified wood biochars (Ca-BCs) for P recovery while significantly lowering the tetracycline (TC) adsorption onto Ca-BCs. Ca-BCs were prepared via calcination of mixtures of Ca(OH)2 and wood BC under 100-500 °C for removing P and TC from water. Compared to the pristine BC (without Ca(OH)2 modification), Ca-BC100 (Ca-BC prepared at 100 °C) showed a significant increase of P adsorption capacity from 4.00 to 138.70 mg/g due to reactive interaction between P and Ca(OH)2 on Ca-BC while decrease of TC adsorption capacity from 62.17 to 20.86 mg/g owing to decrease of surface area from 260.50 to 120.26 m2/g. Batch adsorption tests implied that the P adsorption on Ca-BC100 would occur mainly via electrostatic attraction (pH > 2.1) and formation of hydroxylapatite (Ca5(PO4)3(OH)) between phosphate and Ca(OH)2. In addition, Ca-BC100 reacted with TC via electrostatic attraction (pH > 7.6), complexation, hydrogen bond, and π-π interactions. P and TC adsorption onto Ca-BC100 was a chemical, endothermic, and spontaneous process. The dynamic adsorption experiments using a fixed bed column filled with Ca-BC100 indicated that Ca-BC100 could continuously and effectively remove P and TC from water. Ca-BC100 also effectively lowered P and COD in the dairy wastewater. Under the environmentally relevant conditions, continuous treatment of water containing P and TC using the pristine BC followed by Ca-BC100 showed the pristine BC removed 96% of TC and only 6% of P from water while Ca-BC100 made high recovery of P (94% of P) with negligible TC. Therefore, Ca-BC100 could be used for effective recovery of P with negligible TC from wastewater, and then applied to agricultural systems as a sustainable and safe P-rich biofertilizer.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal/química , Cinética , Fósforo , Tetraciclina/química , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 750: 141691, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853938

RESUMO

This work focused on the impacts of FeCl3 impregnation ratio on the properties of FeCl3-activated bermudagrass (BG)-derived biochars (IA-BCs), adsorption of sulfamethoxazole (SMX) onto IA-BCs and regeneration of SMX-spent IA-BC. Compared with the control BC (85.82 m2/g), IA-BCs made via pyrolysis with FeCl3 to BG mass ratio between 1 and 3 (1-3 g FeCl3/g BG) resulted in significantly enhancing surface area (1014-1035 m2/g), hydrophobicity, Fe content in IA-BCs (3.87-7.27%), and graphitized carbon. The properties of IA-BCs supported magnetic separation and higher adsorption (32-265 mg SMX/g BC) than the control BC (6-14 mg SMX/g BC) at various pH. Adsorption experiments indicated various adsorption mechanisms between SMX and IA-BCs via π-π EDA, hydrophobic interactions, and hydrogen bond with intraparticle diffusion limitation. The adsorption was also found to be spontaneous and exothermic. The IA-BC made at FeCl3 to BG mass ratio of 2 (IA-BC2.0) showed the maximum adsorption capacity for SMX (253 mg SMX/g BC) calculated from Langmuir isotherm model. Additionally, both NaOH desorption and thermal oxidation showed effective regeneration of SMX-saturated IA-BC2.0 over multiple cycles. After three cycles of adsorption-regeneration, 64% and 62% of regeneration efficiencies were still achieved under thermal treatment at 300 °C and desorption with 0.1 M NaOH solution, respectively, indicating a cost-efficient adsorbent for the elimination of SMX in water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cynodon , Ferro , Sulfametoxazol , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA