Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168954, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042188

RESUMO

To investigate the strengthening effects and mechanisms of bioaugmentation on the microbial remediation of uranium-contaminated groundwater via bioreduction coupled to biomineralization, two exogenous microbial consortia with reducing and phosphate-solubilizing functions were screened and added to uranium-contaminated groundwater as the experimental groups (group B, reducing consortium added; group C, phosphate-solubilizing consortium added). ß-glycerophosphate (GP) was selected to stimulate the microbial community as the sole electron donor and phosphorus source. The results showed that bioaugmentation accelerated the consumption of GP and the proliferation of key functional microbes in groups B and C. In group B, Dysgonomonas, Clostridium_sensu_stricto_11 and Clostridium_sensu_stricto_13 were the main reducing bacteria, and Paenibacillus was the main phosphate-solubilizing bacteria. In group C, the microorganisms that solubilized phosphate were mainly unclassified_f_Enterobacteriaceae. Additionally, bioaugmentation promoted the formation of unattached precipitates and alleviated the inhibitory effect of cell surface precipitation on microbial metabolism. As a result, the formation rate of U-phosphate precipitates and the removal rates of aqueous U(VI) in both groups B and C were elevated significantly after bioaugmentation. The U(VI) removal rate was poor in the control group (group A, with only an indigenous consortium). Propionispora, Sporomusa and Clostridium_sensu_stricto_11 may have played an important role in the removal of uranium in group A. Furthermore, the addition of a reducing consortium promoted the reduction of U(VI) to U(IV), and immobilized uranium existed in the form of U(IV)-phosphate and U(VI)-phosphate precipitates in group B. In contrast, U was present mainly as U(VI)-phosphate precipitates in groups A and C. Overall, bioaugmentation with an exogenous consortium resulted in the rapid removal of uranium from groundwater and the formation of U-phosphate minerals and served as an effective strategy for improving the treatment of uranium-contaminated groundwater in situ.


Assuntos
Água Subterrânea , Urânio , Fosfatos/metabolismo , Urânio/metabolismo , Oxirredução , Bactérias/metabolismo , Biodegradação Ambiental
2.
Environ Res ; 218: 114769, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463989

RESUMO

The use of modified biochar for the remediation of heavy metal (HM) has received much attention. However, the immobilization mechanism of biochar to multiple HMs and the interaction of different forms of HMs with microorganisms are still unclear. K2HPO4-modified biochar (PBC) was produced and used in a 90-days immobilization experiment with soil collected from a typic lead-zinc (Pb-Zn) mining soil. Incubation experiments showed that PBC enhanced the transformation of Cd, Pb, Zn and Cu from exchangeable (Ex-) and/or carbonate-bound forms (Car-) to organic matter-bound (Or-) and/or residual forms (Re-). After scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffractometry (XRD), fourier transform infrared (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) analysis, the mechanisms of HM immobilization by PBC were proposed as precipitation (PO43-, HPO42-, OH- and CO32-), electrostatic attraction, complexation (-COOH, -OH and R-O-H) and the indirect roles of soil parameter variations (pH, moisture and microbial community). Microbial community analysis through high-throughput sequencing showed that PBC reduced bacterial and fungal abundance. However, addition of PBC increased the relative proportions of Proteobacteria by 15.04%-42.99%, Actinobacteria by 4.74%-22.04%, Firmicutes by 0.76%-23.35%, Bacteroidota by 0.16%-12.34%, Mortierellomycota by 4.00%-9.66% and Chytridiomycota by 0.10%-13.7%. Ex-Cd/Pb/Zn, Car-Cd/Zn and Re-Cd/Pb/As were significantly positively (0.001

Assuntos
Metais Pesados , Poluentes do Solo , Zinco , Cádmio/análise , Chumbo , Fósforo , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Bactérias/genética , Bacteroidetes
3.
Environ Sci Pollut Res Int ; 30(9): 23096-23109, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36316554

RESUMO

Stimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.e., 7.0 and 5.0) with glycerol (GY) as the control group. The results revealed that removal ratios of uranium with GP were all higher than those with GY, and reduced crystalline U(IV)-phosphate and U(VI)-phosphate minerals (recalcitrant to oxidative remobilization) were generated in the GP groups. Although bioreduction efficiency was influenced at pH 5.0, the stability of the end product with GP was elevated significantly compared with that with GY. Mechanism analysis demonstrated that GP could activate bioreduction and biomineralization of the microbial community, and two stages were included in the GP groups. In the early stage, bioreduction and biomineralization were both involved in the immobilization process. Subsequently, part of the U(VI) precipitate was gradually reduced to U(IV) precipitate by microorganisms. This work implied that the formation of U-phosphate minerals via bioreduction coupled with biomineralization potentially offers a more effective strategy for remediating uranium-contaminated groundwater with long-term stability.


Assuntos
Água Subterrânea , Urânio , Biodegradação Ambiental , Urânio/análise , Biomineralização , Glicerol , Elétrons , Oxirredução , Água Subterrânea/química , Minerais , Glicerofosfatos , Concentração de Íons de Hidrogênio , Fosfatos
4.
Environ Res ; 211: 113025, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35278470

RESUMO

In this study, a complex bacterial consortium was enriched from a typical Pb-Zn mine area and immobilized by sodium alginate to form biospheres, which were used for treatment of selenite (Se(IV))- and cadmium (Cd(II))-containing wastewater without external carbon source. Batch experiments showed that the maximum Se(IV) removal efficiency was 92.36% under the optimal conditions of an initial pH of 5, dosage of 5 g/L, initial Se(IV) concentration of 7.9 mg/L and reaction time of 168 h. Subsequently, more than 99% of 11.2 mg/L Cd(II) was removed by the biospheres within 10 h. Physicochemical characterization showed that reduction and adsorption were the main mechanisms for Se(IV) and Cd(II) removal, respectively. During the removal process, selenium and CdSe nanoparticles were formed. Bacterial community analysis showed the dominant bacterial genera changed after treatment of Se(IV)- and Cd(II)-containing wastewater. Additionally, 16S rRNA gene function prediction results showed that amino acid transport, carbohydrate transport, ion transport and metabolism were the dominant gene functions. The present study provides a potential way for the biological treatment of Se(IV)- and Cd(II)-containing wastewater using immobilized biospheres without external carbon source in short-term.


Assuntos
Ácido Selenioso , Selênio , Bactérias/genética , Bactérias/metabolismo , Cádmio , Carbono , RNA Ribossômico 16S/genética , Ácido Selenioso/metabolismo , Águas Residuárias
5.
Bull Environ Contam Toxicol ; 107(6): 1208-1219, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34173010

RESUMO

This study presents a successful treatment of biological acidic Se(IV)- and Cd(II)-containing wastewater via the SBR with limited carbon source (100 mg/L COD). Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), high solution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrometer (XPS) results verified the formation of elemental Se and CdSe nanoparticles in the sludge. The abundance of genera in the microbial community gradually changed over the treatment phases depending on the Se(IV) and Cd(II) exposure with different influent COD concentrations. The taxa of Proteiniclasticum, Clostridium_sensu_stricto_12, Longilinea and Mycobacterium were dominant. Redundancy analysis (RDA) indicates that COD concentrations had the greatest impact on Zoogloea and Pseudomonas by promoting an increased abundance and decreased abundance, respectively. Overall, the results extended our understanding of the mechanisms and microbial community responding for the Se(IV) and Cd(II) removal under limited carbon availability in acidic wastewater.


Assuntos
Selênio , Águas Residuárias , Cádmio , Carbono , Ácido Selenioso
6.
Environ Pollut ; 261: 114176, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088436

RESUMO

The microbial characteristics and bacterial communities of sediment sludge upon different concentrations of exposure to uranium were investigated by high solution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and high-throughput sequencing. After exposure to initial uranium concentrations of 10-50 µM for 24 h in synthetic wastewater, the removal efficiencies of uranium reached 80.7%-96.5%. The spherical and short rod bacteria were dominant in the sludge exposed to uranium. HRTEM-EDS and XPS analyses indicated that reduction and adsorption were the main mechanisms for uranium removal. Short-term exposure to low concentrations of uranium resulted in a decrease in bacterial richness but an increase in diversity. A dramatic change in the composition and abundances of the bacterial community were present in the sediment sludge exposed to uranium. The highest removal efficiency was identified in the sediment sludge exposed to 30 µM uranium, and the dominant bacteria included Acinetobacter (44.9%), Klebsiella (20.0%), Proteiniclasticum (6.7%), Enterobacteriaceae (6.6%), Desulfovibrio (4.4%), Porphyromonadaceae (4.1%), Comamonas (2.4%) and Sedimentibacter (2.3%). By comparison to the inoculum sediment sludge, exposure to uranium caused a substantial difference in the majority of bacterial abundance.


Assuntos
Urânio/análise , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Esgotos , Águas Residuárias
7.
Environ Sci Pollut Res Int ; 26(6): 5613-5622, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30612368

RESUMO

The bacterial community of an anaerobic granular sludge associated with uranium depletion was investigated following its exposure to uranium under different initial pH conditions (pH 4.5, 5.5, and 6.5). The highest uranium removal efficiency (98.1%) was obtained for the sample with an initial pH of 6.5, which also supported the highest bacterial community richness and diversity. Venn diagrams visualized the decrease in the number of genera present in both the inoculum and the uranium-exposed biomass as the initial pH decreased from 6.5 to 4.5. Compared with the inoculum, a significant increase in the abundances of the phyla Chloroflexi and Proteobacteria was observed following uranium exposure. At initial pH conditions of 6.5 to 4.5, the proportions of the taxa Anaerolineaceae, Chryseobacterium, Acinetobacter, Pseudomonas, and Sulfurovum increased significantly, likely contributing to the observed uranium removal. Uranium exposure induced a greater level of dynamic diversification of bacterial abundances than did the initial pH difference.


Assuntos
Reatores Biológicos/microbiologia , Urânio/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Radioativos da Água/análise , Anaerobiose , Bactérias , Bactérias Anaeróbias , Biodegradação Ambiental , Biomassa , Chloroflexi , Concentração de Íons de Hidrogênio , Proteobactérias , Esgotos , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo
8.
Microb Ecol ; 76(3): 648-659, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29417188

RESUMO

The effect of 10-50 µM uranium (U(VI)) on the bacterial community of anaerobic granular sludge was investigated by 24-h exposure tests, after which the bacterial community was analyzed by high-throughput sequencing. The specific U(VI) reducing activity of the anaerobic granular sludge ranged between 3.1 to 19.7 µM U(VI) g-1(VSS) h-1, independently of the initial U(VI) concentration. Alpha diversity revealed that microbial richness and diversity was the highest for anaerobic granular sludge upon 10 µM uranium exposure. Compared with the original biomass, the phylum of Euryarchaeota was significantly affected, whereas the Bacteroidetes, Firmicutes, and Synergistetes phyla were only slightly affected. However, the abundance of Chloroflexi and Proteobacteria phyla clearly increased after 24 h uranium exposure. Based on the genus level analysis, significant differences appeared in the bacterial abundance after uranium exposure. The proportions of Pseudomonas, Acinetobacter, Parabacteroides, Brevundimonas, Sulfurovum, and Trichococcus increased significantly, while the abundance of Paludibacter and Erysipelotrichaceae incertae sedis decreased dramatically. This study shows a dynamic diversification of the bacterial composition as a response to a short time (24 h) U(VI) exposure (10-50 µM).


Assuntos
Bactérias/efeitos dos fármacos , Esgotos/microbiologia , Urânio/farmacologia , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodiversidade , Euryarchaeota/classificação , Euryarchaeota/efeitos dos fármacos , Euryarchaeota/genética , Euryarchaeota/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA