Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4655-4662, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802804

RESUMO

This study aimed to provide a scientific basis for the application of the mycorrhizal planting technology of Dendrobium officinale by investigating the effects of mycorrhizal planting on the fingerprints of D. officinale and the content of six chemical components. Seventeen samples of D. officinale under mycorrhizal and conventional planting were collected from four regions, such as Jinhua of Zhejiang. The HPLC fingerprints were established to evaluate the similarity of the samples. The content of six chemical components of the samples was determined by HPLC. There were 15 common peaks in the fingerprints, and five of them were identified by marker compounds, which were naringenin, 4,4'-dihydroxy-3,5-dimethoxybibenzyl, 3,4'-dihydroxy-5-methoxybibenzyl, 3',4-dihydroxy-3,5'-dimethoxybibenzyl(gigantol), and 3,4-dihydroxy-4',5-dimethoxybibenzyl(DDB-2). The similarities of the fingerprints of mycorrhizal and conventional planting samples and the control fingerprint were in the ranges of 0.733-0.936 and 0.834-0.942, respectively. The influences of mycorrhizal planting on fingerprints were related to planting regions, the germplasm of D. officianle, and the amount of fungal agent. The content of six chemical components in the samples varied greatly, and the content of DDB-2 was the highest, ranging from 69.83 to 488.47 µg·g~(-1). The mycorrhizal planting samples from Chongming of Shanghai and Taizhou of Jiangsu showed an increase in the content of 5-6 components, while samples from Zhangzhou of Fujian and Jinhua of Zhejiang showed an increase in the content of 1-2 components. The results showed that mycorrhizal planting technology did not change the chemical profile of small molecular chemical components of D. officinale, but affected the content of chemical components such as bibenzyls, which has a good application prospect.


Assuntos
Dendrobium , Micorrizas , Dendrobium/química , China , Cromatografia Líquida de Alta Pressão
2.
Front Plant Sci ; 13: 1085022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684732

RESUMO

A large amount of agro-industrial residues are produced from the planting, production and processing of traditional Chinese herbs. As a tonic, edible, and economical herb, Codonopsis pilosula root has been extensively developed into medicine and functional food. However, thousands of tons of aerial parts (stems, leaves, flowers and fruits) have been directly discarded after harvest each year. To utilise agro-wastes, Pleurotus ostreatus was cultivated on a basal substrate supplemented with C. pilosula stems and leaves (CSL). Physicochemical analyses revealed that the basal substrate mixed with CSL was more abundant in cellulose, hemicellulose, and most of micronutrients such as K, Ca, Mg, S, Fe, Zn and Mo. After the first flush, the fruit bodies in CSL group exhibited a higher fresh weight, a wider average pileus diameter and a lower moisture level. Nutrition analyses presented a higher protein content and a lower fat content in mushrooms from CSL group compared with control group. Interestingly, 14 amino acids (glutamine, arginine, valine, leucine, and etc.) and 3 micronutrients (Se, Fe and Zn) were increased after CSL addition to the substrate. Based on untargeted metabolomics, a total of 710 metabolites were annotated. Compared with control group, there were 142 and 117 metabolites significantly increased and decreased in the CSL group. Most of them were grouped into classes of amino acids and peptids, fatty acids, carbohydrates, terpenoids, and etc. Moreover, an abundance of phytometabolites from Codonopsis were detected in P. ostreatus from CSL group, including polyacetylenes or polyenes, flavonoids, alkaloids, terpenoids, organic acids, and etc. UPLC-MS/MS results demonstrated that lobetyolin content in the CSL group samples was 0.0058%. In summary, the aerial parts of C. pilosula processed for use in the production of edible mushroom is an emerging strategy to converting agricultural waste into functional foods.

3.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771064

RESUMO

Ginseng (Panax ginseng C.A. Mey.) is a precious Chinese traditional medicine, for which ginsenosides are the most important medicinal ingredients. Cytochrome P450 enzymes (CYP450) and their primary redox molecular companion NADPH cytochrome P450 reductase (CPR) play a key role in ginsenoside biosynthesis pathway. However, systematic studies of CPR genes in ginseng have not been reported. Numerous studies on ginsenoside synthesis biology still use Arabidopsis CPR (AtCPR1) as a reductase. In this study, we isolated two CPR genes (PgCPR1, PgCPR2) from ginseng adventitious roots. Phylogenetic tree analysis showed that both PgCPR1 and PgCPR2 are grouped in classⅡ of dicotyledonous CPR. Enzyme experiments showed that recombinant proteins PgCPR1, PgCPR2 and AtCPR1 can reduce cytochrome c and ferricyanide with NADPH as the electron donor, and PgCPR1 had the highest enzymatic activities. Quantitative real-time PCR analysis showed that PgCPR1 and PgCPR2 transcripts were detected in all examined tissues of Panax ginseng and both showed higher expression in stem and main root. Expression levels of the PgCPR1 and PgCPR2s were both induced after a methyl jasmonate (MeJA) treatment and its pattern matched with ginsenoside accumulation. The present investigation suggested PgCPR1 and PgCPR2 are associated with the biosynthesis of ginsenoside. This report will assist in future CPR family studies and ultimately improving ginsenoside production through transgenic engineering and synthetic biology.


Assuntos
NADPH-Ferri-Hemoproteína Redutase/genética , Panax/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Regulação da Expressão Gênica de Plantas/genética , Modelos Moleculares , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Filogenia
4.
Front Plant Sci ; 12: 814011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082817

RESUMO

Codonopsis pilosula has been used in traditional Chinese medicine for hundreds of years, where it has been used to treat anaemia, fatigue, a weak spleen, and stomach problems, among other ailments. The roots of C. pilosula are considered medicinal, while the aerial parts are always directly discarded after harvest in autumn or winter. Some studies have shown that the stems and leaves of C. pilosula also contain a variety of active metabolites, including saponins, flavonoids, terpenoids, and polysaccharides. To efficiently utilise resources, waste products from C. pilosula leaves and stems were analysed by untargeted metabolomics and chemometrics. A total of 1508 metabolites were detected and annotated, of which 463 were identified as differentially expressed metabolites (DEMs). These DEMs were grouped into classes, such as carboxylic acids and derivatives, steroids, organic oxygen compounds, fatty acyls, prenol lipids, and flavonoids. Metabolic profiling of C. pilosula tissues showed that the contents of polyacetylenes, polyenes, flavonoids, some alkaloids, steroids, terpenoids, and organic acids were higher in stems and leaves, whereas the contents of the main lignans and some alkaloids were more enriched in roots. Moreover, C. pilosula stems and leaves also contained a lobetyolin, syringin and atractylenolide III, which were detected by LC-MS/MS and HPLC-UV. The extracts of C. pilosula aerial parts also showed stronger antioxidant properties than roots. C. pilosula stems and leaves were rich in active ingredients and might have great value for development and utilisation.

5.
Mol Med Rep ; 23(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33215224

RESUMO

Acute kidney injury (AKI) is a common clinical disease. Ferropotosis, a new type of regulatory cell death, serves an important regulatory role in AKI. Pachymic acid (PA), a lanostane­type triterpenoid from Poria cocos, has been reported to be protective against AKI. However, the protective mechanism of PA in AKI is not yet fully understood. The present study aimed to investigate the effect and molecular mechanism of PA on ferroptosis in renal ischemia reperfusion injury in vivo. A total of 30 mice were intraperitoneally injected with 5, 10 and 20 mg/kg PA for 3 days. A bilateral renal pedicle clip was used for 40 min to induce renal ischemia­reperfusion injury and establish the model. The results demonstrated that treatment with PA decreased serum creatinine and blood urea nitrogen, and ameliorated renal pathological damage. Transmission electron microscopy revealed no characteristic changes in ferroptosis in the mitochondria of the renal tissue in the high­dose PA group, and only mild edema. Furthermore, treatment with PA increased glutathione expression, and decreased the expression levels of malondialdehyde and cyclooxygenase 2. Treatment with PA enhanced the protein and mRNA expression levels of the ferroptosis related proteins, glutathione peroxidase 4 (GPX4), solute carrier family 7 (cationic amino acid transporter, y+ system) member 11 (SLC7A11) and heme oxygenase 1 (HO­1) in the kidney, and increased the expression levels of nuclear factor erythroid derived 2 like 2 (NRF2) signaling pathway members. Taken together, the results of the present study suggest that PA has a protective effect on ischemia­reperfusion induced acute kidney injury in mice, which may be associated with the inhibition of ferroptosis in the kidneys through direct or indirect activation of NRF2, and upregulation of the expression of the downstream ferroptosis related proteins, GPX4, SLC7A11 and HO­1.


Assuntos
Ferroptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Triterpenos/farmacologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Ciclo-Oxigenase 2 , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Malondialdeído/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Traumatismo por Reperfusão/metabolismo
6.
Artigo em Chinês | WPRIM | ID: wpr-879042

RESUMO

The color of Rubus chingii was characterized by digital method, and the content of water extract, alcohol extract, total flavonoids, total polysaccharides, total polyphenols, ellagic acid, linden glycoside, kaophenol-3-O-rutin were determined. Correlation regression was used to analyze the correlation between color and composition. The results showed that L~* was positively correlated with total polyphenols, kaophenol-3-O-rutin and tilide, and moderately positively correlated with total flavones, ellagic acid and aqueous extracts. The a~* value was negatively correlated with total polyphenols, kaophenol-3-O-rutin, and linden glycosides, while was moderately correlated with total flavones, aqueous extracts, and ellagic acid. The b~* value was negatively correlated with the water extract, and moderately correlated with the content of total polyphenols, total polysaccharides, alcohol extract and kaophenol-3-O-rutin, which showed that R. chingii mature color had a significant correlation with material composition in the process of dynamic change. According to the law of dynamic change in the color and quality indexes, it is determined that the appropriate harvest time is in late April to May 1, while the fruit is not turn yellow. The agronomic traits related to fruit was(12.49±0.56) mm in diameter,(14.25±1.19)mm in height,(1.20±0.14) g in weight, the chroma L~* value was 52.87±3.14,a~* value was 2.01±1.58, b~* values was 28.31±3.88. The results lay a foundation for establishing an objective quantitative evaluation model of R. chingii color from experience.


Assuntos
Flavonoides , Frutas , Glicosídeos , Extratos Vegetais , Rubus
7.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3837-3843, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893578

RESUMO

We used exogenous GA_3 to break the seed dormancy of Thesium chinense. We used high-throughput sequencing technology was used to sequence the transcriptome of dormant seed embryos and dormancy breaking seed embryos of Th. chinense, and the data was analyzed bioinformatically and systematically. The results showed that exogenous GA_3 could effectively break the seed dormancy of Th. chinense; 73 794 up-regulated genes and 42 776 down regulated genes were obtained by transcriptome sequencing; 116 570 diffe-rential genes were annotated by GO function to GO items such as metabolism process, cell process, cell, cell component, binding and catalytic activity. A total of 133 metabolic pathways were found by Pathway analysis of 26 508 differentially expressed genes. In the process of dormancy release, DEGs were mainly enriched in translation, carbohydrate metabolism, folding, classification, degradation and amino acid metabolism. Based on the annotation results in KEGG database, 20 metabolic pathways related to dormancy release were found. Dormancy release of Th. chinense seeds is a complex biological process, including cell morphology construction, secondary metabolite synthesis, sugar metabolism and plant signal transduction, among which plant hormone signal transduction is one of the key factors to regulate dormancy release. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Assuntos
Dormência de Plantas , Santalaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas , Sementes , Transcriptoma
8.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1893-1900, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32489075

RESUMO

The study aims at exploring the expression of differential genes and related metabolic pathways in the process of seed dormancy release. The dormant embryo and the dormant released embryo of Paris polyphylla var. chinensis were used as the test materials, a new generation high-throughput sequencing methods to sequence the transcriptome of the samples was used to carry out systematic bioinformatics analysis. We obtained 62 882 650 and 62 263 366 clean reads from the DNA libraries of the samples before and after dormancy breaking. A total of 69 248 differentially expressed genes(DEGs) were obtained, 56 426 up-regulated genes and 12 822 down-regulated genes. There are 138 267 differentially expressed genes in the process of embryo dormancy release, which were annotated by GO function to 58 subclasses of biological processes, molecular functions and cell components. The annotated differentially expressed genes were closely related to metabolic processes, biological regulation, cell component synthesis and enzyme catalytic activity. We found 139 metabolic pathways through pathway analysis of 58 722 differentially expressed genes. Before and after dormancy, DEGs were mainly enriched in carbon metabolism, secondary metabolite biosynthesis and polysaccharide metabolism. Based on the annotation results in KEGG database, we found 16 metabolic pathways related to the dormancy release of P. polyhoylla var. chinensis. A large number of differentially expressed genes were involved in embryo morphogenesis, polysaccharide decomposition and protein synthesis during seed development and dormancy release. It involves the interaction of multiple metabolic pathways and constitutes a complex regulation network for dormancy relief.


Assuntos
Liliaceae , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Sementes
9.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5669-5676, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496106

RESUMO

In this study, the roots, stems and leaves of diploid and autotetraploid Dendrobium huoshanense were used as materials to compare their contents of polysaccharides and alkaloids, and the transcriptome sequencing analysis was carried out. The results showed that the contents of polysaccharides and alkaloids in the roots, stems and leaves of tetraploid were 7.6%, 34.5%, 17.2%, 0.01%, 0.024% and 0.035% higher than those of diploid D. huoshanense, respectively. The contents of active components in different tissues were significantly different. There were 3 687 differentially expressed genes in diploid and tetraploid D. huoshanense, of which 2 346 genes were up-regulated and 1 341 down regulated. Go functional analysis showed that these genes were mainly involved in growth and development, stress resistance and other related functions. KEGG pathway analysis showed that most of the differential genes were concentrated in the processes of carbon metabolism, signal transduction, carbohydrate metabolism, amino acid metabolism and energy metabolism. The differential expression of key genes involved in the metabolism of polysaccharides, terpenes and polyketones, amino acid metabolism, hormone synthesis and signal transduction in diploid and tetraploid plants may be the main reason for the high energy content, the increase of active components and the growth potential of tetraploid plants.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Diploide , Raízes de Plantas , Polissacarídeos , Transcriptoma
10.
Zhongguo Zhong Yao Za Zhi ; 45(24): 5958-5966, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496135

RESUMO

The purpose of this study was to explore the expression pattern of miRNA in the process of embryo dormancy and provide a reference for the mechanism of regulating seed dormancy and germination by miRNA. We used high-throughput sequencing technology, bioinformatics analysis and real-time fluorescent quantitative PCR(qPCR) technology to sequence, screen and identify miRNAs of dormant and dormant embryos. The results showed that there were 23 811 977, 24 276 695, 20 611 876 and 20 601 811 unique sequences in the four sample libraries during the period of dormancy and dormancy release. MiRNAs are mainly distributed between 21 and 24 nt, among which the length of 24 nt occurred most frequently. A total of 31 known miRNAs were identified, belonging to 13 different families. 93 new miRNAs were predicted by bioinformatics software. Ten miRNAs(mir156 a-5 p, mir160 a-5 p, mir160 h-1, mir169 a-5 p, mir157 d, mir159 a-1, mir395-3, mir156 f-5 p, mir156-2 and mir171 a-3 p) were screened out. In this study, 10 miRNAs related to seed dormancy release were identified. The target genes mainly involved carbohydrate metabolism, plant hormone signal transduction, cell division and growth. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.


Assuntos
Liliaceae , MicroRNAs , Regulação da Expressão Gênica de Plantas , Humanos , Dormência de Plantas , RNA de Plantas , Sementes
11.
PLoS One ; 13(10): e0199520, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303969

RESUMO

Pharmaceutical sludge is considered as a hazardous material with high treatment and disposal costs. In the present study, the catalytic wet oxidation (CWO) of pharmaceutical sludge by CuO-CeO2/γ-Al2O3 as the catalyst was investigated. The catalyst was prepared by traditional wet impregnation. The catalyst was characterized using X-ray Powder Diffraction (XRD) and Scanning Electron Microscopy (SEM). CWO was performed in an experimental batch reactor. Several parameters that could affect the catalytic degradation efficiency, including catalyst dose, temperature, time, oxygen pressure and pH, were investigated. Under optimum conditions, the highest removal rate of volatile suspended solids (VSS) was 87.3% and was achieved at 260°C for 60 min with an oxygen pressure of 1.0 MPa and 10 g/L of catalyst. At the same time, the chemical oxygen demand (COD) removal rate reached as high as 72.6%. This work implies that catalytic wet oxidation is a promising method for the highly efficient degradation of pharmaceutical sludge.


Assuntos
Cobre/química , Resíduos Industriais , Oxirredução , Esgotos , Eliminação de Resíduos Líquidos/métodos , Óxido de Alumínio/química , Análise da Demanda Biológica de Oxigênio , Catálise , Cério/química , Indústria Farmacêutica , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Poluentes Químicos da Água/química , Purificação da Água/métodos
12.
Acta Biochim Biophys Sin (Shanghai) ; 50(11): 1094-1103, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321253

RESUMO

Cytochromes P450 (CYP450s), a superfamily of mono-oxygenases, are essential to generate highly functionalized secondary metabolites in plants and contribute to the diversification of specialized triterpenoid biosynthesis in eudicots. However, screening and identifying the exact CYP450 genes in ginsenoside biosynthesis is extremely challenging due to existence of large quantities of members in CYP450 superfamily. Therefore, to screen the CYP450 genes involved in ginsenoside biosynthesis, transcriptome dataset of Panax ginseng was created in our previous work using the technique of the next-generation sequencing. On the basis of bioinformatics analysis, 16 putative CYP450 genes with significant differential expression were screened from the dataset and submitted to GenBank, in which 11 of them have been cloned. Methyl jasmonate (MeJA) was used as an elicitor to analyze the expression profiles of candidate CYP450 genes by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). The results of qRT-PCR analysis revealed that the expression of some CYP450 genes were strongly induced by MeJA and showed different transcription levels at different treatment time points. Homology analysis indicated that each putative CYP450 protein of P. ginseng has a conserved domain consisting of E-E-R-F-P-R-G. The CYP450 genes were screened and cloned here to enrich the resources of CYP450 genes, and the results of bioinformatics analysis provided a foundation to further identify the function of CYP450s involved in ginsenoside biosynthesis. Furthermore, this study facilitated the construction of microbial cell factories for increasing the production of ginsenosides by means of metabolic engineering.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Oxilipinas/farmacologia , Panax/genética , Proteínas de Plantas/genética , Transcriptoma/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ginsenosídeos/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Panax/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Bot Stud ; 59(1): 8, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511914

RESUMO

BACKGROUND: Gastrodia elata, a mycoheterotrophic orchid, is a well-known medicinal herb. In nature, the seed germination of G. elata requires proper fungal association, because of the absence of endosperm. To germinate successfully, G. elata obtains nutrition from mycorrhizal fungi such as Mycena. However, Mycena is not able to supply nutrition for the further development and enlargement of protocorms into tubers, flowering and fruit setting of G. elata. To date, current genomic studies on this topic are limited. Here we used the proteomic approach to explore changes in G. elata at different stages of symbiotic germination. RESULTS: Using mass spectrometry, 3787 unique proteins were identified, of which 599 were classified as differentially accumulated proteins. Most of these differentially accumulated proteins were putatively involved in energy metabolism, plant defense, molecular signaling, and secondary metabolism. Among them, the defense genes (e.g., pathogenesis-/wound-related proteins, peroxidases, and serine/threonine-protein kinase) were highly expressed in late-stage protocorms, suggesting that fungal colonization triggered the significant defense responses of G. elata. CONCLUSIONS: The present study indicated the metabolic change and defensive reaction could disrupt the balance between Mycena and G. elata during mycorrhizal symbiotic germination.

14.
Zhongguo Zhong Yao Za Zhi ; 41(3): 396-402, 2016 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-28868853

RESUMO

In order to investigate the epigenetic variations between diploid and autotetraploid of Platycodon grandiflorus. The diploid buds of P. grandiflorus were soaked in the mixture of different concentration colchicines and 0.002 g•mL ⁻¹ dimethyl sulphoxide (DMSO).The identification of autotetraploid plants were based on morphological characteristics, chromosome number and flow cytometry. And then the level and pattern of DNA methylation explored by using the technology of methylation sensitive amplified polymorphism (MSAP).The result demonstrated that the buds soaked in 0.2% colchicines and 0.002 g•mL ⁻¹ DMSO solution for 12 h was ideal conditions to induce autotetraploid of P. grandiflorus, with induction rate of 32.0%.The diploid and tetraploid plants existed distinctly differences in morphological indexes.Totally,1 586 bands were amplified by 20 pairs of selective primers, of which 764 and 822 bands were detected in diploid and autotetraploid respectively. The total methylation ratio,full methylation ratio and hemimethylated ratio were 91.25%,61.25% and 30.65% in diploid of P. grandiflorus,respectively.However,the total methylation ratio,full methylation ratio and hemimethylated ratio of autotetraploid of P. grandiflorus were 86.13%,54.38% and 31.75%, respectively. Compared with diploid, the genomic DNA total methylate ratio and full methylation ratio of autotetration plants decreased by 6.02% and 7.14%.But the hemimethylated ratio of autotetraploid was higher than that of diploid, which more than 1.6%. All this results indicated that DNA methylation patterns have adjusted during the polyploidy process..


Assuntos
Variação Genética , Platycodon/genética , Tetraploidia , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Metilação de DNA , DNA de Plantas/genética , Platycodon/classificação , Platycodon/crescimento & desenvolvimento , Platycodon/metabolismo , Polimorfismo Genético
15.
Int J Mol Sci ; 16(12): 30190-203, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26694378

RESUMO

Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is an endangered medicinal plant in China, also called "King Medicine". Due to lacking of sufficient nutrients in dust-like seeds, orchid species depend on mycorrhizal fungi for seed germination in the wild. As part of a conservation plan for the species, research on seed germination is necessary. However, the molecular mechanism of seed germination and underlying orchid-fungus interactions during symbiotic germination are poorly understood. In this study, Illumina HiSeq 4000 transcriptome sequencing was performed to generate a substantial sequence dataset of germinating A. roxburghii seed. A mean of 44,214,845 clean reads were obtained from each sample. 173,781 unigenes with a mean length of 653 nt were obtained. A total of 51,514 (29.64%) sequences were annotated, among these, 49 unigenes encoding proteins involved in GA-GID1-DELLA regulatory module, including 31 unigenes involved in GA metabolism pathway, 5 unigenes encoding GID1, 11 unigenes for DELLA and 2 unigenes for GID2. A total of 11,881 genes showed significant differential expression in the symbiotic germinating seed sample compared with the asymbiotic germinating seed sample, of which six were involved in the GA-GID1-DELLA regulatory module, and suggested that they might be induced or suppressed by fungi. These results will help us understand better the molecular mechanism of orchid seed germination and orchid-fungus symbiosis.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Orchidaceae/genética , Sementes/genética , Simbiose/genética , Transcriptoma/genética , Bases de Dados Genéticas , Ontologia Genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Micorrizas , Orchidaceae/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 40(3): 404-9, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26084160

RESUMO

In order to investigate the genetic basis of morphological variation of tetraploid plantlets of Atractylodes macrocephala, diploid plantlets were taken as experimental material, sterile filtration colchicine was used to soak 0.5-1.0 cm long buds. The difference between morphology and stomatal of diploid and tetraploid of A. macrocephala was compared, and genome polymorphism was explored by AFLP. The results showed that the buds dipped in 0.1% colchicine solution for 36 h was optimal conditions to induce tetraploid of A. macrocephala with induction rate of 32.0%. Morphological indexes such as leaf area index, leaf length and width, the density of stomas and the number of chloroplast of tetraploid were distinctly different from diploid. Four hundred and fifty-one bands ranging with 80-500 bp were amplified with 24 pairs of primers, the rate of polymorphism was 32.59%. These amplification sites of diploid were different from tetraploid of A. macrocephala, and the differences in morphology of them were reflected in the DNA polymorphism.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Atractylodes/genética , Tetraploidia , Análise de Sequência de DNA
17.
Sci Rep ; 5: 8464, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25682752

RESUMO

Dalbergia odorifera T. Chen is a medium-sized evergreen tree that produces purple-brown heartwood called JiangXiang in traditional Chinese medicine, the formation process of which takes several decades. In this study, a standard culture method was used to isolate fungi from the wounded and normal stems of D. odorifera aiming to investigate the difference between the two types of wood. To characterize the spatial colonisation of endophytic fungi, an anatomical study was undertaken using the two different types of wood of D. odorifera. A total of 320 wood segments were placed on PDA plates and 87 fungal isolates were obtained. Only two fungi were isolated from the healthy white wood tissue, whereas 85 fungi were found in the purple-brown wounded-wood tissues. The two isolates from 160 white healthy wood tissues were assigned to Bionectriaceae sp., and the rest in wounded wood tissues were analyzed to 12 fungal species, indicating both a high fungal diversity and colonization rate in the purple-brown wounded wood. There was a difference in fungal species composition between coloured and white wood samples collected from the same tree. Eutypa sp. was the most commonly isolated species in the purple-brown wounded wood.


Assuntos
Dalbergia/microbiologia , Fungos/isolamento & purificação , DNA Fúngico/análise , Endófitos , Fungos/classificação , Fungos/genética , Medicina Tradicional Chinesa , Microscopia Eletrônica de Varredura , Filogenia , Caules de Planta/microbiologia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Madeira/anatomia & histologia , Madeira/microbiologia
18.
Reprod Toxicol ; 51: 14-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463531

RESUMO

Emodin, a bioactive anthraquinone widely used in Chinese traditional medicine, disrupts mouse testicular gene expression in vivo. In this study, we investigated the toxicity of emodin to human sperm in vitro. Different doses of emodin (25, 50, 100, 200 and 400µM) were applied to ejaculated human sperm. The results indicated that 100, 200 and 400µM emodin significantly inhibited the total motility, progressive motility and linear velocity of human sperm. In addition, sperm's ability to penetrate viscous medium together with progesterone induced capacitation and acrosome reaction was also adversely affected by emodin. In contrast, emodin did not affect sperm viability. Furthermore, intracellular Ca(2+) concentration ([Ca(2+)]i) and tyrosine phosphorylation, which serve as key regulators of sperm function, were dose-dependently reduced by emodin (50-400µM). These results suggest that emodin inhibits human sperm functions by reducing sperm [Ca(2+)]i and suppressing tyrosine phosphorylation in vitro.


Assuntos
Emodina/toxicidade , Espermatozoides/efeitos dos fármacos , Cálcio/metabolismo , Humanos , Masculino , Fosforilação , Progesterona , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Tirosina/metabolismo
19.
Artigo em Chinês | WPRIM | ID: wpr-244574

RESUMO

In this paper, Fourier transform infrared spectroscopy fingerprint analysis of Marsdenia tenacissima samples was used to develop a reliable method of tracing the geographical origins. Forty-eight samples from four provinces of China were analyzed by FTIR. We analyzed and characterized the fingerprints in both the full spectrum peaks and characteristic peaks, then the principal component analysis and the cluster analysis were carried out. The results of fingerprint analysis, correlation analysis, principal component analysis and cluster analysis can identify the geographic origins correctly, which verified and supplemented each other; the identification results and the actual location showed a high degree of consistency, namely the lower the space distance, the greater the similarity of different samples. These results revealed the obvious superiority and practical value in comparison to the more tedious and time-consuming wet chemistry method normally used. Using appropriate metrology methods can trace the geographical source correctly. The M. tenacissima materials from the region of Maguan should be considered as genuine medicinal materials taking into account the good quality.


Assuntos
China , Análise por Conglomerados , Medicamentos de Ervas Chinesas , Classificação , Padrões de Referência , Geografia , Marsdenia , Química , Classificação , Medicina Tradicional Chinesa , Análise de Componente Principal , Controle de Qualidade , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Métodos
20.
J Ethnopharmacol ; 141(1): 242-9, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22353709

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal vines listed in Chinese pharmacopoeia possess important medicinal efficacy in traditional Chinese medicines. AIM OF THE STUDY: The ITS2 region, which has several characteristics that make it a valuable DNA barcode, was studied to discriminate the stems of medicinal vines to confirm their identities and ensure their safe application in pharmaceuticals by using complementary discrimination methods. MATERIALS AND METHODS: Complementary discrimination methods were performed on two datasets, including 393 samples of 170 species from 22 genera 13 families, which belonged to medicinal vines and their adulterants. Based on the primary ITS2 sequences, three main discrimination methods (phylogenetic tree, the nearest distance, and BLAST 1) were adopted to identify species. Moreover, we applied both two-dimensional (2-D) and three-dimensional (3-D) structures of ITS2 to differentiate species. RESULTS: ITS2 performed well, with over 95.0% of species and 100% of genera being correctly differentiated for the two datasets. All results showed that the ITS2 region unveiled a remarkable ability to identify closely related species within different families and genera. CONCLUSION: Our findings supported that the ITS2 region was an efficient marker for authentication of medicinal vines.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/análise , Análise Discriminante , Marcadores Genéticos , Medicina Tradicional Chinesa , Fitoterapia , Preparações de Plantas/uso terapêutico , Plantas Medicinais/genética , Bases de Dados de Ácidos Nucleicos , Etnofarmacologia , Modelos Moleculares , Conformação de Ácido Nucleico , Filogenia , Preparações de Plantas/isolamento & purificação , Caules de Planta , Plantas Medicinais/química , Plantas Medicinais/classificação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA