Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 156, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173696

RESUMO

BACKGROUND: Kaixin Jieyu Granule (KJG), an improved formula of Kai-xin-san and Si-ni-san, is a highly effective formula with demonstrated efficacy in preventing depression in previous studies. However, the underlying molecular mechanisms of KJG's antidepressant effects on inflammatory molecules remain unclear. This study aimed to explore the therapeutic effects of KJG on depression using network pharmacology and experimental validation. METHODS: We employed a multi-faceted approach, combining high-performance liquid chromatography (HPLC), network pharmacology, and molecular docking, to unravel the underlying mechanisms of KJG's anti-depressant effects. To confirm our findings, we conducted at least two independent in vivo experiments on mice, utilizing both the chronic unpredictable mild stress (CUMS)-induced and lipopolysaccharide (LPS)-induced models. Furthermore, the results of in vivo experiments were verified by in vitro assays. Behavioral tests were utilized to evaluate depression-like behaviors, while Nissl staining was used to assess morphological changes in the hippocampus. Pro-inflammatory cytokines and pathway-related protein expressions were determined using a combination of immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), and Western Blotting (WB). RESULTS: Our network-based approaches indicated that ginsenoside Rg1 (GRg1) and saikosaponin d (Ssd) are the major constituents of KJG that exert an anti-depressant effect by regulating TLR4, PI3K, AKT1, and FOXO1 targets through the toll-like receptor, PI3K/AKT, and FoxO pathways. In vivo, KJG can attenuate depression-like behaviors, protect hippocampal neuronal cells, and reduce the production of pro-inflammatory mediators (TNF-α, IL-6, and IL-1ß) by repressing TLR4 expression, which was regulated by the inhibition of FOXO1 through nuclear exportation. Furthermore, KJG increases the expression levels of PI3K, AKT, p-PI3K, p-AKT, and p-PTEN. Our in vitro assays are consistent with our in vivo studies. On the other hand, the above effects can be reversed by applying TAK242 and LY294002. CONCLUSION: Our findings suggest that KJG can exert anti-depressant effects by regulating neuroinflammation through the PI3K/AKT/FOXO1 pathway by suppressing TLR4 activation. The study's findings reveal novel mechanisms underlying the anti-depressant effects of KJG, presenting promising avenues for the development of targeted therapeutic approaches for depression.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 4 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças Neuroinflamatórias , Farmacologia em Rede , Simulação de Acoplamento Molecular , Proteína Forkhead Box O1/metabolismo
2.
Biomed Res Int ; 2020: 5848497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32851081

RESUMO

Sanhuang Xiexin Decoction (SXD) is commonly used to treat type 2 diabetes mellitus (T2DM) in clinical practice of traditional Chinese medicine (TCM). In order to elucidate the specific analysis mechanisms of SXD for T2DM, the method of network pharmacology was applied to this article. First, the effective ingredients of SXD were obtained and their targets were identified based on the TCMSP database. The T2DM-related targets screened from the GEO database were also collected by comparing the differential expressed genes between T2DM patients and healthy individuals. Then, the common targets in SXD-treated T2DM were obtained by intersecting the putative targets of SXD and the differential expressed genes of T2DM. And the protein-protein interaction (PPI) network was established using the above common targets to screen key genes through protein interactions. Meanwhile, these common targets were used for GO and KEGG analyses to further elucidate how they exert antidiabetic effects. Finally, a gene pathway network was established to capture the core one in common targets enriched in the major pathways to further illustrate the role of specific genes. Based on the data obtained, a total of 67 active compounds and 906 targets of SXD were identified. Four thousand one hundred and seventy-six differentially expressed genes with a P value < 0.005 and ∣log2(fold change) | >0.5 were determined between T2DM patients and control groups. After further screening, thirty-seven common targets related to T2DM in SXD were finally identified. Through protein interactions, the top 5 genes (YWHAZ, HNRNPA1, HSPA8, HSP90AA1, and HSPA5) were identified. It was found that the functional annotations of target genes were associated with oxygen levels, protein kinase regulator, mitochondria, and so on. The top 20 pathways including the PI3K-Akt signaling pathway, cancers, HIF-1 signaling pathway, and JAK-STAT signaling pathway were significantly enriched. CDKN1A was shown to be the core gene in the gene-pathway network, and other several genes such as CCND1, ERBB2, RAF1, EGF, and VEGFA were the key genes for SXD against T2DM. Based on the network pharmacology approach, we identified key genes and pathways related to the prognosis and pathogenesis of T2DM and also provided a feasible method for further studying the chemical basis and pharmacology of SXD.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Terapia de Alvo Molecular , Proteínas 14-3-3/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA