RESUMO
In order to elucidate the role of bottom-cultured clams in the coastal nutrient cycle, the seasonal filtration, ingestion and biodeposition rates were in situ measured and carbon (C), nitrogen (N) and phosphorus (P) budgets of Ruditapes philippinarum among four seasons were modeled. The results showed that the scope for growth of R. philippinarum in carbon (SFG(C)), nitrogen (SFG(N)), and phosphorus (SFG(P)) all varied significantly among seasons, with the highest values in spring. Meanwhile, SFG(C) was negative in summer, SFG(N) and SFG(P) were always positive throughout the year. The seasonal variations of SFG(C), SFG(N) and SFG(P) were -3.94-49.82 mg C x ind(-1) x d(-1), 0.72-9.49 mg N x ind(-1) x d(-1), and 0.15-3.06 mg P x ind(-1) x d(-1), respectively. The net growth efficiencies in carbon (K(C2)), nitrogen (K(N2)), and phosphorus (K(P2)) also showed a distinct seasonal pattern among seasons, and ranked as K(P2) > K(N2) > K(C2). The C, N, and P budgets illustrated that the R. philippinarum population relatively used more N and P than C for growth and efficiently transferred the pelagic primary production to a higher trophic level. The current study suggested that R. philippinarum bottom-cultured at large scale might play a dominant role in the nutrient cycle of the coastal ecosystem and should be considered as an important ecological component in coastal areas.
Assuntos
Bivalves/química , Carbono/química , Ecossistema , Nitrogênio/química , Fósforo/química , Animais , Aquicultura , Bivalves/fisiologia , Estações do Ano , Frutos do MarRESUMO
The concentrations of heavy metals and petroleum hydrocarbons (PHCs) in surface sediments were investigated in the sand flats of Shuangtaizi Estuary, Bohai Sea of China in May, 2013. Ecological risk assessment indicated that most heavy metals cause low ecological risk to the estuarine environment, with the exception of Cd and Hg (considerable and moderate risk, respectively). Principal component analysis in combination with correlation analysis among heavy metals, PHCs and geological factors (e.g., granularity) was used to identify possible sources of pollutants in Shuangtaizi Estuary. Results showed that the main pollution sources of the area come from anthropogenic factors, such as sewage discharge and oil exploitation.
Assuntos
Estuários , Metais Pesados/análise , Petróleo/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos/análise , Análise de Componente Principal , Medição de RiscoRESUMO
Selenium binding proteins (SeBPs) play a crucial role in controlling the oxidation/reduction in many physiological processes. Here we reported the isolation and characterization of a cDNA of SeBP gene from Sinonovacula constricta (denoted as ScSeBP). The full-length cDNA of ScSeBP was of 2345 bp, consisting of a 5'UTR of 246 bp, a 3' UTR of 626 bp, and a complete ORF of 1473 bp encoding a polypeptide with 491 amino acid residues. The predicted molecular mass of deduced amino acid of ScSeBP was 54.85 kDa and the theoretical pI was 6.44. Tissue distribution analysis of the ScSeBP revealed that the mRNA transcripts of ScSeBP were constitutively expressed in all examined tissues with the higher expressions in gill, gonad and the haemocytes. The temporal expression of ScSeBP in gill and haemocytes after B[α]P and heavy metals exposure were recorded by qPCR. B[α]P exposure at 0.5 and 5 mg L(-1) caused significant increase in mRNA expression of ScSeBP in haemocytes, but down-regulated ScSeBP mRNA expression in gill. Concerning heavy metals stresses, the suppressed expression patterns were detected in gill and haemocyte except lower concentration of PbCl2 exposure in haemocytes at 12 h. All our results indicated that ScSeBP was one of key effectors in mediating B[α]P and heavy metals exposure.