Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Fitoterapia ; 155: 105054, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34626737

RESUMO

ß-Carboline alkaloid harmaline (HA) is a candidate drug molecule that has been proven to have broad and significant biological activity. Herein, the effects of HA on the riboflavin (RF)-sensitized photooxidation under aerobic conditions were studied for the first time. The photooxidation reaction of HA catalyzed by RF is triggered by UV light at 365 nm and shows a time-dependent stepwise reaction process. Seven transformed products, including five undescribed compounds, oxoharmalines A-E (1-4 and 7), and two known compounds, N-(2-(6-Methoxy-2-oxoindolin-3-yl)ethyl)acetamide (5) and harmine (6), were isolated and identified from the reaction system, following as the gradual oxidation mechanisms. The rare polymerization and dehydrogenation processes in radical-mediated photocatalytic reactions were involved in the process. The transformed products 2-7 exhibited significant neuroprotective activity in a model of H2O2-introduced injury in SH-SY5Y cells, which suggested that the products of the interaction between HA and vitamins may be beneficial to health.


Assuntos
Harmalina/farmacologia , Fármacos Neuroprotetores/farmacologia , Riboflavina/metabolismo , Carbolinas , Linhagem Celular Tumoral , Harmina , Humanos , Estrutura Molecular , Oxirredução , Raios Ultravioleta
2.
Int J Biol Macromol ; 183: 811-817, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33957203

RESUMO

Inhibition of soluble epoxide hydrolase (sEH) is considered to be an effective treatment for inflammation-related diseases, and small molecules origin from natural products show promising activity against sEH. Two undescribed protostanes, 3ß-hydroxy-25-anhydro-alisol F (1) and 3ß-hydroxy-alisol G (2) were isolated from Alisma orientale and identified as new sEH inhibitors with IC50 values of 10.06 and 30.45 µM, respectively. Potential lead compound 1 was determined as an uncompetitive inhibitor against sEH, which had a Ki value of 5.13 µM. In-depth molecular docking and molecular dynamics simulations revealed that amino acid residue Ser374 plays an important role in the inhibition of 1, which also provides an idea for the development of sEH inhibitors based on protostane-type triterpenoids.


Assuntos
Alisma/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Triterpenos/farmacologia , Inibidores Enzimáticos/química , Epóxido Hidrolases/química , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conformação Proteica , Triterpenos/química
3.
Am J Chin Med ; 49(2): 315-358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622212

RESUMO

As a genus of the Asteraceae, Inula is widely distributed all over the world, and several of them are being used in traditional medicines. A number of metabolites were isolated from Inula species, and some of these have shown to possess ranges of pharmacological activities. The genus Inula contains abundant sesquiterpenoids, such as eudesmanes, xanthanes, and sesquiterpenoid dimers and trimers. In addition, other types of terpenoids, flavonoids, and lignins also exist in the genus Inula. Since 2010, more than 300 new secondary metabolites, including several known natural products that were isolated for the first time from the genus Inula. Most of them exhibited potential bioactivities in various diseases. The review aimed to summarize the advance of recent researches (2010-2020) on phytochemical constituents, biosynthesis, and pharmacological properties of the genus Inula for providing a scientific basis and supporting its application and exploitation for new drug development.


Assuntos
Inula/química , Extratos Vegetais , Desenvolvimento de Medicamentos , Humanos , Estrutura Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Phytother Res ; 35(4): 1872-1886, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33184919

RESUMO

The genus Alisma contains 11 species distributed worldwide, of which at least two species (A. orientale [Sam.] Juzep. and A. plantago-aquatica Linn.) have been used as common herbal medicines. Secondary metabolites obtained from the genus Alisma are considered to be the material basis for the various biological functions and medicinal applications. In this review, we mainly focused on the recent investigations of secondary metabolites from plants of the genus Alisma and their biological activities, with the highlighting on the diversity of the chemical structures, the biosynthesis of interesting secondary metabolites, the biological activities, and the relationships between structures and bioactivities.


Assuntos
Alisma/química , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/química , Humanos
5.
Int J Biol Macromol ; 167: 1262-1272, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189757

RESUMO

Carboxylesterase 2 (CES 2), plays a pivotal role in endobiotic homeostasis and xenobiotic metabolism. Protostanes, the major constituents of the genus Alisma, display a series of pharmacological activities. Despite the extensive studies of pharmacological activities, the investigation on inhibitory effects of protostanes against CES 2 is rarely reported. In this study, the inhibitory activities of a library of protostanes (1-25) against human CES 2 were investigated for the first time, using 6,8-dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl benzoate (DDAB) as the specific fluorescent probe for human CES 2. Compounds 1, 2, 7, 8, 12, 13, 18, 19, and 25 showed strong inhibitory effects towards CES 2. For the most potent compounds 1, 7, 13, and 25, the inhibition kinetics were further investigated, and these four protostanes were all uncompetitive inhibitors against human CES 2 with the inhibition constant (Ki) values ranging from 0.89 µM to 2.83 µM. In addition, molecular docking and molecular dynamics stimulation were employed to analyze the potential interactions between these protostanes and CES 2, and amino acid residue Gln422 was identified to play a crucial role in the strong inhibition of protostanes towards CES 2.


Assuntos
Alisma/química , Carboxilesterase/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/farmacologia , Acridinas/química , Benzoatos/química , Corantes Fluorescentes/química , Concentração Inibidora 50 , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
6.
Bioorg Chem ; 102: 104065, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663670

RESUMO

Pulmonary fibrosis is a progressive, irreversible, and fatal fibrotic lung disease with a high mortality and morbidity, and commonly nonresponsive to conventional therapy. Inula japonica Thunb. is a traditional Chinese medicine, known as "Xuan Fu Hua" in Chinese, and has been widely applied to relieve cough and dyspnea and eliminate retained phlegm with a long history. In this study, we aimed to evaluate the anti-fibrosis effect and action mechanism of I. japonica extract (IJE) for the treatment of bleomycin (BLM)-induced pulmonary fibrosis in mice. IJE treatment significantly restored BLM-induced alterations in body weight loss and lung function decline, decreased the collagen deposition induced by BLM in lung tissues, and inhibited fibrotic and inflammatory factors, such as α-SMA, TGF-ß1, TNF-α, IL-6, COX-2, NF-κB, and GSK3ß, in a dose-dependent manner. We found that IJE could enhance the concentration of 8,9-epoxyeicosatrienoic acid (8,9-EET) and decrease concentrations of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET), 11,12-DHET, and 14,15-DHET in BLM-induced mice. Meanwhile, IJE suppressed protein and mRNA expression levels of soluble epoxide hydrolase (sEH), and significantly displayed the inhibition of sEH activity with an IC50 value of 0.98 µg/mL. Our results indicated that IJE exerted remarkable anti-fibrosis effect on BLM-induced pulmonary fibrosis in mice via inhibiting sEH activity, resulting in the regulation of GSK3ß signaling pathway. Our findings revealed the underlying action mechanism of I. japonica, and suggested that I. japonica could be regarded as a candidate resource for the treatment of pulmonary fibrosis.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Inula/química , Medicina Tradicional Chinesa/métodos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Animais , Bleomicina/efeitos adversos , Humanos , Camundongos
7.
Fitoterapia ; 146: 104668, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32540378

RESUMO

Two novel quinolone alkaloids (1 and 2) and two novel indole alkaloids (5 and 8), together with eleven known analogues, were isolated from the nearly ripe fruits of Evodia rutaecarpa. Their structures were determined by extensive spectroscopic data, including NMR, HRESIMS, and ECD. Additionally, the anti-tumor, hypoglycemic, and anti-bacterial activities of the isolated alkaloids were evaluated in vitro. Compound 5 as a new alkaloid displayed moderate inhibitory effect against four human cancer cell lines (MCF-7 IC50 = 30.7 µM, Hepg-2 IC50 = 65.2 µM, A549 IC50 = 39.1 µM, and SHSY-5Y IC50 = 24.7 µM), α-glucosidase (IC50 = 23.9 µM) and PTP1B (IC50 = 75.8 µM). Compound 11 showed better inhibitory effect against PTP1B (IC50 = 16.2 µM) compared with that of the positive control. Compounds 5, 13, and 14 showed moderate inhibitory effects against Bacillus cereus with MIC values of 50, 25, and 10 µM, respectively.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Evodia/química , Frutas/química , Alcaloides Indólicos/farmacologia , Quinolonas/farmacologia , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Linhagem Celular Tumoral , China , Humanos , Alcaloides Indólicos/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Quinolonas/isolamento & purificação
8.
Int J Biol Macromol ; 159: 1022-1030, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428588

RESUMO

Cardiovascular diseases, such as hypertension and cardiac failure, have become the most major and global cause for threatening human health in recent years. Uncaria rhynchophylla as a traditional Chinese medicine is widely used to treat hypertension for a long history, whereas its medicinal effective components and potential action mechanism are uncertain. Therefore, twenty-four alkaloids (1-24) isolated from U. rhynchophylla were assayed for their relaxant effects against phenylephrine (Phe)-induced contraction of rat mesenteric arteries. Among them, we surprisingly found that uncarialin A (21) exhibited most potent relaxation effect against Phe-induced contraction (IC50 = 0.18 µM) in the manner of independent on endothelium-derived vasorelaxing factors and endothelium. All the experiments including measurement of Ca2+ in vascular smooth muscle cells (VSMCs) by fluorescence microscopy, whole-cell path clamp, molecular docking, and molecular dynamics, demonstrated that uncarialin A (21) could significantly inhibit L-type calcium channel subunit alpha-1C (Cav1.2) via the hydrogen bond interaction with amino acid residue Met1186, allowing the inhibition of Ca2+ inward current. Our results suggested that uncarialin A (21) could be served as a potential L-type Cav1.2 blocker in the effective treatment of cardiovascular diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Medicamentos de Ervas Chinesas/química , Vasodilatadores/farmacologia , Alcaloides/análise , Animais , Sítios de Ligação , Células CHO , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo L/química , Células Cultivadas , Cricetinae , Cricetulus , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Uncaria/química , Vasodilatadores/química
9.
Bioorg Chem ; 90: 103101, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291611

RESUMO

In this study, forty-nine kinds of traditional Chinese medicines (TCMs) were evaluated for their inhibitory activities against human carboxylesterase 2 (HCE 2) using a human liver microsome (HLM) system. Swertia bimaculata showed significant inhibition on HCE 2 at 10 µg/mL among forty-nine kinds of TCMs. The extract of Swertia bimaculata was separated by preparative HPLC to afford demethylbellidifolin (1) identified by MS, 1H NMR, and 13C NMR spectra. Demethylbellidifolin (1) was assayed for its inhibitory HCE 2 effect by HCE 2-mediated DDAB hydrolysis, and its potential IC50 value was 3.12 ±â€¯0.64 µM. Demethylbellidifolin (1) was assigned as a mixed-type competitive inhibitor with the inhibiton constant Ki value of 6.87 µM by Lineweaver-Burk and slope plots. Living cell imaging was conducted to corroborate its inhibitory HCE 2 activity. Molecular docking indicated potential interactions of demethylbellidifolin (1) with HCE 2 through two hydrogen bonds of the C-3 and C-5 hydroxy groups with amino acid residues Glu227 and Ser228 in the catalytic cavity, respectively.


Assuntos
Carboxilesterase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Swertia/química , Xantenos/isolamento & purificação , Xantenos/farmacologia , Carboxilesterase/metabolismo , Humanos , Hidrólise , Microssomos Hepáticos/enzimologia , Estrutura Molecular
10.
Phytomedicine ; 51: 120-127, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466609

RESUMO

BACKGROUND: Carboxylesterases (CEs) belong to the serine hydrolase family, and are in charge of hydrolyzing chemicals with carboxylic acid ester and amide functional groups via Ser-His-Glu. Uncaria rhynchophylla (Miq.) Miq. ex Havil. is a famous traditional Chinese medicine used in managing hyperpyrexia, epilepsy, preeclampsia, and hypertension in China. HYPOTHESIS/PURPOSE: To discover the potential natural human carboxylesterase 2 (hCE 2) inhibitors from U. rhynchophylla. METHODS: Compounds were obtained from the hooks of U. rhynchophylla by silica gel and preparative HPLC. Their structures were elucidated by using HRESIMS, 1D and 2D NMR spectra. Their inhibitory activeties and inhibition kinetics against hCE 2 were assayed by the fluorescent probe, and potential mechanisms were also investigated by molecular docking. RESULTS: Twenty-three compounds, including a new phenolic acid uncariarhyine A (1), eight known triterpenoids (2-9), and ten known aromatic derivatives (10, 13-16, and 19-23), were isolated from U. rhynchophylla. Compounds 1-5, 7, 9, and 15 showed significant inhibitory activities against hCE 2 with IC50 values from 4.01  ±â€¯0.61 µM to 18.60 ±â€¯0.21 µM, and their inhibition kinetic analysis results revealed that compounds 1, 5, 9, and 15 were non-competitive; compounds 3 and 4 were mixed-type, and compounds 2 and 7 were uncompetitive. Molecular docking studies indicated inhibition mechanisms of compounds 1-5, 7, 9, and 15 against hCE 2. CONCLUSION: Our present findings highlight potential natural hCE 2 inhibitors from U. rhynchophylla.


Assuntos
Carboxilesterase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Fitoquímicos/farmacologia , Triterpenos/farmacologia , Uncaria/química , China , Cromatografia Líquida de Alta Pressão , Humanos , Hidroxibenzoatos/isolamento & purificação , Hidroxibenzoatos/farmacologia , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação
11.
Cell Physiol Biochem ; 47(4): 1453-1464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29940559

RESUMO

BACKGROUND/AIMS: Uncaria rhynchophylla, known as "Gou-teng", is a traditional Chinese medicine (TCM) used to extinguish wind, clear heat, arrest convulsions, and pacify the liver. Although U. rhynchophylla has a long history of being often used to treat central nervous system (CNS) diseases, its efficacy and potential mechanism are still uncertain. This study investigated neuroprotective effect and the underlying mechanism of U. rhynchophylla extract (URE) in MPP+-induced SH-SY5Y cells and MPTP-induced mice. METHODS: MPP+-induced SH-SY5Y cells and MPTP-induced mice were used to established Parkinson's disease (PD) models. Quantitative proteomics and bioinformatics were used to uncover proteomics changes of URE. Western blotting was used to validate main differentially expressed proteins and test HSP90 client proteins (apoptosis-related, autophagy-related, MAPKs, PI3K, and AKT proteins). Flow cytometry and JC-1 staining assay were further used to confirm the effect of URE on MPP+-induced apoptosis in SH-SY5Y cells. Gait analysis was used to detect the behavioral changes in MPTP-induced mice. The levels of dopamine (DA) and their metabolites were examined in striatum (STR) by HPLC-EC. The positive expression of tyrosine hydroxylase (TH) was detected by immunohischemical staining and Western blotting. RESULTS: URE dose-dependently increased the cell viability in MPP+-induced SH-SY5Y cells. Quantitative proteomics and bioinformatics results confirmed that HSP90 was an important differentially expressed protein of URE. URE inhibited the expression of HSP90, which further reversed MPP+-induced cell apoptosis and autophagy by increasing the expressions of Bcl-2, Cyclin D1, p-ERK, p-PI3K p85, PI3K p110α, p-AKT, and LC3-I and decreasing cleaved caspase 3, Bax, p-JNK, p-p38, and LC3-II. URE also markedly decreased the apoptotic ratio and elevated mitochondrial transmembrane potential (DΨm). Furthermore, URE treatment ameliorated behavioral impairments, increased the contents of DA and its metabolites and elevated the positive expressions of TH in SN and STR as well as the TH protein. CONCLUSIONS: URE possessed the neuroprotective effect in vivo and in vitro, regulated MAPK and PI3K-AKT signal pathways, and inhibited the expression of HSP90. U. rhynchophylla has potentials as therapeutic agent in PD treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos , Uncaria/química , Animais , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/química , Humanos , Camundongos , Fármacos Neuroprotetores/química , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Proteômica
12.
Phytomedicine ; 42: 34-42, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655695

RESUMO

BACKGROUND: Cholestasis is a clinical syndrome of liver damage that is caused by accumulation of bile acids in the liver and systemic circulation. Farnesoid X receptor (FXR) can regulate synthesis, metabolism, and excretion of bile acids. The rhizomes of Alisma orientale is a well-known traditional Chinese medicine to treat edema, obesity, gonorrhea, leukorrhea, diarrhea, hyperlipidemia, and diabetes in China. HYPOTHESIS/PURPOSE: We hypothesized Alisma orientale extract (AOE) to exert hepatoprotective effect against α-naphthylisothiocyanate (ANIT) induced cholestasis in rat. We aimed to investigate the mechanism of AOE. STUDY DESIGN: Male Sprague Dawley rats with intrahepatic cholestasis induced by ANIT were treated with AOE (150, 300, or 600 mg/kg). Rats receiving vehicle (0.5% CMC-Na) served as control. METHODS: 48 h after ANIT administration, rats were sacrificed. Blood was collected to obtain serum and livers were removed for histopathology and protein preparation. Biochemical indicators in serum were determined using commercial kits and triterpenoids were determined by liquid chromatography tandem Qtrap mass spectrometry. Proteomics was analyzed by liquid chromatography tandem ion-trap mass spectrometry. The differently expressed proteins were analyzed via the network database and verified by western blotting. The interaction between triterpenoids and FXR were evaluated by luciferase assay and molecular docking. RESULTS: AOE treatment significantly decreased the serum AST, ALT, TBIL, and intrahepatic TBA and improved the liver pathologic change induced by ANIT. Proteomics analysis indicated that AOE regulated proteins related to bile acid homeostasis via activating farnesoid X receptor (FXR) signaling pathway. Luciferase assay and molecular docking results indicated that triterpenoids could activate FXR, which resulting in ameliorative accumulation of bile acids in the liver by increase of metabolism and transportation for bile acids, and decrease of synthesis for bile acids. CONCLUSION: AOE protected against rat liver injury and cholestasis induced by ANIT by activation of farnesoid X receptor, suggesting that A. orientale could be regarded as a potential hepatoprotective drug.


Assuntos
Alisma/química , Colestase Intra-Hepática/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , 1-Naftilisotiocianato/toxicidade , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Ácidos e Sais Biliares/metabolismo , Bilirrubina/metabolismo , China , Colestase Intra-Hepática/induzido quimicamente , Colestase Intra-Hepática/patologia , Medicamentos de Ervas Chinesas/química , Homeostase/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Simulação de Acoplamento Molecular , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Nat Prod Res ; 32(23): 2749-2755, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28954548

RESUMO

The chemical constituent investigation of Alisma plantago-aquatica subsp. orientale has led to isolation and identification of thirteen compounds, including one new sesquiterpene, (10S)-11-hydroxy-ß-cyperone (1), three sesquiterpenes (2-4), five phenylpropanoids (5-9), and four alkaloids (10-13). We report herein, for the first time, the presence of compounds 2-13 in the genus Alisma. Their structures were established using 1D and 2D NMR and HRESIMS spectroscopic analyses. All the isolated compounds were assayed for their inhibitory activities against nitric oxide production in LPS-induced RAW 264.7 cells and antioxidant activities by DPPH scavenging assay. Compounds 1-13 displayed significant inhibitory effects against NO production at a certain concentration, while compound 5 showed antioxidant activity with IC50 of 55.28 µM. The interactions of compounds 1, 5, and 11 with iNOS were investigated using molecular docking.


Assuntos
Alisma/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Células RAW 264.7 , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
14.
Pharmacogn Mag ; 13(52): 566-570, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200714

RESUMO

BACKGROUND: Chaiqin Qingning Capsule (CQQNC) was a prescription of Traditional Chinese Medicine with the effects of clearing away heat and removing toxin, harmonizing the exterior and interior, it was widely used in Asian, for example, China and Japan, different batches of the raws materials and different processing time may be the vital factor which raised a challenge to control the quality of the CQQNC. EXPERIMENTAL METHODS: In this experiment, a high-performance liquid chromatography-mass spectrometry/MS (HPLC-MS/MS) method was developed to simultaneously determine ten bioactive components for the quality control of CQQNC. Chromatographic separation was achieved using an XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 µm) with a mobile phase composed of 10 mm aqueous ammonium acetate and acetonitrile using a gradient elution in 20 min. This study was conducted by multiple reaction monitoring mode through electrospray ionization resource with a negative ionization mode. RESULTS: The established method was validated with good performance of precision, accuracy, stability, and reproducibility and was utilized to simultaneously quantify ten constituents of CQQNC obtained from seven different batches. CONCLUSION: It is the first time to report the rapid and simultaneous analysis of the ten compounds in CQQNC by HPLC-MS/MS and apply to determine 10 constituents in 7 batches of CQQNC bought from drug store in china. This method could be considered as good quality criteria to control the quality of CQQNC. SUMMARY: In this paper, a simple, specific, and rapid high-performance liquid chromatogram coupled with triple-quadrupole mass spectrometry method for simultaneous quantification of ten constituents in Chaiqin Qingning Capsule has been developed for the first time. This method could be considered as good quality criteria to control the quality of CQQNC. Abbreviations used: CHM: Chinese herbal medicine; TCM: Traditional Chinese Medicine; CQQNC: Triple-quadrupole mass spectrometry Chaiqin Qingning Capsules; HPLC-MS/MS: High liquid chromatography equipped with tandem mass spectrometry; ESI: Electrospray ionization; DP: Declustering potential; CE: Collision energy; RSD: Relative standard deviation; LOD: Limit of detection; LOQ: Limit of quantity.

15.
Fitoterapia ; 121: 175-182, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28760607

RESUMO

The bioactive substance investigation of Euphorbia ebracteolata obtained 17 compounds by various chromatographic techniques. Their structures were elucidated using widely spectroscopic data, including ESI-MS, HRESI-MS, CD, 1D- and 2D-NMR, which gave 5 new phenolic glucosides and 4 new monoterpenoids. The phenolic glucosides and monoterpenoids showed the inhibitory effect against the human carboxylesterase-2 (hCE-2) using a fluorescence bioassay in vitro, with the strongest inhibitor compound 4 (IC50 7.17µM). The antioxidant effects of these isolated compounds were evaluated using a DPPH scavenging assay. All of the phenolic acids displayed the DPPH scavenging effect, especially that eight compounds have better effect than vitamin C, with the IC50 values ranging from 4.52 to 7.52µM. Additionally, compounds 1-17 showed no cytotoxic effect against five human cancer cell lines by MTT assay.


Assuntos
Euphorbia/química , Glicosídeos/química , Monoterpenos/química , Fenóis/química , Carboxilesterase/antagonistas & inibidores , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Estrutura Molecular , Monoterpenos/isolamento & purificação , Fenóis/isolamento & purificação , Extratos Vegetais/química , Raízes de Plantas/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-27195015

RESUMO

Phyllodium pulchellum (P. pulchellum) is a folk medicine with a significant number of bioactivities. The aim of this study was to investigate the effects displayed by alkaloids fractions, isolated from the roots of P. pulchellum, on neurotransmitters monoamine levels and on monoamine oxidase (MAO) activity. Six alkaloids, which had indolealkylamine or ß-carboline skeleton, were obtained by chromatographic technologies and identified by spectroscopic methods such as NMR and MS. After treatment with alkaloids of P. pulchellum, the reduction of DA levels (54.55%) and 5-HT levels (35.01%) in rat brain was observed by HPLC-FLD. The effect of alkaloids on the monoamines metabolism was mainly related to MAO inhibition, characterized by IC50 values of 37.35 ± 6.41 and 126.53 ± 5.39 µg/mL for MAO-A and MAO-B, respectively. The acute toxicity indicated that P. pulchellum extract was nontoxic.

17.
Zhong Yao Cai ; 39(7): 1541-4, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-30203952

RESUMO

Objective: To study the anti-oxidative constituents of the aerial parts of Plumbago zeylanica. Methods: The ethanol extract of Plumbago zeylanica was separated and purified by various chromatographic techniques. On the basis of various spectroscopic data, the structures of isolated compounds were elucidated. ABTS+radical scavenging were carried out in antioxidant activity evaluation of the isolated compounds. Results: Eleven compounds were isolated and identified as cis-isoshinanolone-4-O-ß-D-glucopyranoside( 1),tachioside( 2),2,6-dimethoxy-p-hydroquinone-1-O-ß-D-glucopyranoside( 3),3-( ß-D-glucopyranosyloxy)-4-methoxybenzoic acid( 4),3'-O-ß-D-glucopyranosyloxy-plumbagic acid( 5),3'-O-ß-D-glucopyranosyloxy-plumbagic acid methyl ester( 6),plumbagic acid( 7),plumbagine A( 8),plumbagine C( 9),syringate-4-O-ß-D-glucopyranoside( 10) and 2-methyl-5-hydroxychromone( 11). Compounds 2,3,and5 displayed significant scavenging effect on ABTS+. Conclusion: Compounds 1 ~ 4,10,11 are obtained from this plant for the first time. Compounds 2,3,and 5 show significant anti-oxidative effects.


Assuntos
Medicamentos de Ervas Chinesas , Plumbaginaceae , Glicosídeos , Componentes Aéreos da Planta , Tetra-Hidronaftalenos
18.
J Nat Prod ; 78(10): 2372-80, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26425784

RESUMO

Twelve new and 10 known protostane triterpenoids were isolated from the rhizome of Alisma orientale. Their structures were elucidated based on physical data analyses, including UV, HRESIMS, NMR experiments ((1)H, (13)C NMR, (1)H-(1)H COSY, HSQC, HMBC, and NOESY), and induced electronic circular dichroism. New compounds 1-12 were classified as protostanes (1-10), 29-norprotostane (11), and 24-norprotostane (12) by structure analyses. Furthermore, the inhibitory effects on human carboxylesterases (hCE-1, hCE-2) of compounds 1-22 were evaluated. Compounds 2, 6, 9, and 11 showed moderate inhibitory activities and were selective toward hCE-2 enzymes, with IC50 values of 8.68, 4.72, 4.58, and 2.02 µM, respectively. The inhibition kinetics of compound 11 toward hCE-2 were established, and the Ki value was determined as 1.76 µM using a mixed inhibition model. The interaction of bioactive compound 11 with hCE-2 was shown using molecular docking.


Assuntos
Alisma/química , Carboxilesterase/antagonistas & inibidores , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Carboxilesterase/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química , Rizoma/química , Triterpenos/química , Triterpenos/farmacocinética
19.
Fitoterapia ; 99: 352-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451796

RESUMO

Schisanlactone E (SE) is a major triterpene obtained from the plants of genus Kadsura. The aim of this research was to investigate the transformed metabolites of SE by fungi and evaluate the bioactivities of these products. After screening 10 strains of filamentous fungi, Cunninghamella blakesleana AS 3.970 was chosen as a potent organism to be used for the biotransformation of SE. 13 metabolites were obtained and determined to be new compounds through the use of spectroscopic data, including UV, 1D-, 2D-NMR, and HR-ESIMS. Furthermore, in an in vitro bioassay, metabolites 7 and 9 showed moderate inhibitory effects on the nitric oxide production in LPS-induced macrophages with IC50 values of 16.73, 5.91 µM, respectively; 9 could inhibit the proliferation of acetaldehyde-induced HSC-T6 cells, with the IC50 value of 21.4 µM. Preliminary findings on the structure-activity relationships for these metabolites were also discussed.


Assuntos
Cunninghamella/metabolismo , Kadsura/química , Macrófagos/efeitos dos fármacos , Triterpenos/química , Animais , Biotransformação , Linhagem Celular , Concentração Inibidora 50 , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Relação Estrutura-Atividade , Triterpenos/metabolismo
20.
Zhong Yao Cai ; 37(3): 424-7, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25174106

RESUMO

OBJECTIVE: To investigate the bioactive constituents against hepatic fibrosis from the roots of Phyllodium pulchellum. METHODS: The chemical constituents of Phyllodium pulchellum roots were obtained by various chromatographic technologies and identified by several spectroscopic methods. RESULTS: Ten compounds were elucidated as 3,5,2',4'-tetrahydroxy-2",2"-dimethylpyrano-[5",6",7,8] -flavanone (1), yukovanol (2), citflavanone (3), 8-prenylated 5,7,3',4'-tetrahydroxyflavanone (4), pulchelstyrene A (5), pulchelstyrene B (6), pulchelstyrene D (7), 3-indolcarbaldehyde (8), 3-methoxyindole (9) and p-hydroxybenzoic acid (10). The effects to inhibit the proliferation of activated HSC-T6 cells of all isolated compounds were also evaluated. CONCLUSION: All compounds are isolated from this plant for the first time except for compounds 5 - 7. Compounds 2,4,5 and 6 can inhibit the proliferation of activated HSC-T6 cells in vitro.


Assuntos
Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Fabaceae/química , Raízes de Plantas/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Flavonas/química , Flavonas/isolamento & purificação , Flavonas/farmacologia , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA