Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35741727

RESUMO

In this study, we explored the gene expression patterns of the pituitary gland and hypothalamus of Angus cows at different growth and developmental stages by deep sequencing and we identified genes that affect bovine reproductive performance to provide new ideas for improving bovine fertility in production practice. We selected three 6-month-old (weaning period), three 18-month-old (first mating period), and three 30-month-old (early postpartum) Angus cattle. The physiological status of the cows in each group was the same, and their body conformations were similar. After quality control of the sequencing, the transcriptome analyses of 18 samples yielded 129.18 GB of clean data. We detected 13,280 and 13,318 expressed genes in the pituitary gland and hypothalamus, respectively, and screened 35 and 50 differentially expressed genes (DEGs) for each, respectively. The differentially expressed genes in both tissues were mainly engaged in metabolism, lipid synthesis, and immune-related pathways in the 18-month-old cows as compared with the 6-month-old cows. The 30-month-old cows presented more regulated reproductive behavior, and pituitary CAMK4 was the main factor regulating the reproductive behavior during this period via the pathways for calcium signaling, longevity, oxytocin, and aldosterone synthesis and secretion. A variant calling analysis also was performed. The SNP inversions and conversions in each sample were counted according to the different base substitution methods. In all samples, most base substitutions were represented by substitutions between bases A and G, and the probability of base conversion exceeded 70%, far exceeding the transversion. Heterozygous SNP sites exceeded 37.68%.


Assuntos
Hipotálamo , Hipófise , Animais , Bovinos/genética , Feminino , Fertilidade/fisiologia , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Reprodução/genética
2.
Front Chem ; 9: 666280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996757

RESUMO

Vaccaria segetalis is a dry mature seed of Vaccaria hispanica (Mill.) Rauschert, which belongs to the genus V. segetalis (Neck.) Garcke. There are multiple medicinal parts of V. segetalis, according to the records, including roots, stems, leaves, flowers, and seeds, which should be used together. Currently, V. segetalis is most frequently used in the treatment of menstruation, dysmenorrhea, breast milk stoppages, and chylorrhea. Numerous studies present historical evidence of the use of V. segetalis to treat several diseases and describe its beneficial effects including prolactin- (PRL-) like, estrogen-like, antitumor, antiangiogenesis, and antioxidant activity. We summarized the period from January 1980 to December 2019 regarding V. segetalis. This review paper indicates that V. segetalis has promising clinical applications. The main active ingredients of the plant have been elucidated in recent years. We summarized the previously and newly discovered pharmacological effects of V. segetalis in addition to its active ingredients, ethnopharmacological uses, and toxicological properties, and provided a focus for future research.

3.
Biol Trace Elem Res ; 197(1): 141-148, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31713774

RESUMO

The objective of this study was to determine the effects of selenium (Se) on antioxidative function and the synthesis of milk protein in bovine mammary epithelial cells (BMECs). Two experiments were conducted using a single-factor completely randomized design study. In part I, BMECs were randomly divided into seven groups: control (without Se) and six Se treatments (10, 20, 50, 100, 150, and 200 nmol/L). In part II, based on the results of part I, we used lipopolysaccharide (LPS) as the induced stress source to analyze the protective effect of Se on LPS-induced oxidative damage and the influence on milk protein synthesis of BMECs. BMECs were randomly divided into eight groups: control (without Se and LPS), LPS treatment (only LPS), and six Se treatments with LPS (LS10 to LS200). Treatment of BMECs with Se was found to significantly improve cell proliferation and antioxidant function. LPS could induce oxidative damage which significantly inhibited cell proliferation and antioxidant function in BMECs. Se had a protective effect on the oxidative damage of BMECs induced by LPS. Additionally, our results indicated that LPS damage downregulated the gene expression of milk protein synthesis. Se effectively relieved the inhibition due to LPS-induced oxidative damage on the synthesis of milk protein, and Se concentrations of 50 to 200 nmol/L showed the best effect. In conclusion, Se at concentrations of 50 to 100 nmol/L is better for antioxidant function but had no effect on milk protein synthesis in healthy BMECs. Se ameliorated the damage caused by LPS-induced by improving levels of antioxidant markers and upregulating milk protein synthesis and the expression of genes associated with milk protein in BMECs.


Assuntos
Lipopolissacarídeos , Selênio , Animais , Bovinos , Células Epiteliais/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selênio/farmacologia
4.
Biol Trace Elem Res ; 191(1): 104-114, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30610673

RESUMO

This experiment was conducted to investigate the effects and mechanism of selenium (Se) on antioxidant and immune function of bovine mammary epithelial cells (BMEC) damaged by nitric oxide (NO). The third-generation BMEC was randomly divided into eight treatments with six replicates. The BMEC in the control group was cultured in the medium without Se and diethylenetriamine/NO (DETA/NO) for 30 h. For the DETA/NO group and Se protection group BMEC were exposed to different concentrations of Se (0, 10, 20, 50, 100, 150, and 200 nmol/L) for 24 h, followed by treatment with DETA/NO (1000 µmol/L) for 6 h. Compared with the control group, DETA/NO decreased proliferation rate and activity of thioredoxin reductase (TrxR; P < 0.05). Additionally, DETA/NO decreased the gene expression of both nuclear factor-E2-related factor 2 (Nrf2) and TrxR, as well as the protein expression level of TrxR. However, the activity, and expression levels of inducible nitric oxide synthase (iNOS), as well as the concentration and gene expression level of interleukin-1ß (IL-1ß) and the concentration of NO significantly increased (P < 0.05). The gene expression levels of indexes related to the mitogen-activated protein kinase (MAPK) signaling pathway showed similar changes. Treatment of BMEC with Se significantly reversed DETA/NO-induced changes in a linear or quadratic dose-dependent manner (P < 0.05), with greatest benefit at 50 nmol/L. These data suggests that Se improves the antioxidant function of BMEC, and protects cells from DETA/NO-induced oxidative damage, primarily by enhancing the activity of TrxR and decreasing the concentration of NO through modulation of Nrf2 and MAPK signaling pathways.


Assuntos
Antioxidantes/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Óxido Nítrico/farmacologia , Selênio/farmacologia , Animais , Bovinos , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândulas Mamárias Animais/citologia , Oxirredução , Poliaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA