Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Eye Res ; 224: 109221, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041510

RESUMO

Known as a common malignant tumor among children, retinoblastoma (RB) is highly malignant and has poor prognosis, damages children's vision and degrades quality of life. To identify a potential molecular mechanism of RB, we conducted this study on legumain (LGMN), which is highly expressed in multiple tumors. In this study, we found that LGMN was significantly upregulated in RB cells and was positively expressed in RB tissues. We confirmed that LGMN overexpression (LGMN-OE) can promote RB cell proliferation and inhibit cell apoptosis through CCK8 experiments and flow cytometry. In addition, real-time quantitative polymerase chain reaction (RT‒qPCR) and Western blot results showed that LGMN-OE could regulate the expression of epithelial-mesenchymal transformation-related genes and proteins, related to tumor invasion and metastasis. Moreover, after LGMN knock down, the result was the opposite., RNA sequence analysis revealed 1159 differentially expressed genes between LGMN-OE and the negative control (NCOE), of which 564 were upregulated and 595 were downregulated. The first 10 genes were verified by RT‒qPCR based on P value and fold change. Interestingly, we found that LGMN could regulate the expression of recoverin (RCVRN)through a gene responsible for cancer-related retinopathy. We also screened and verified that LGMN partially activated the PI3K/AKT pathway in RB. Furthermore, we evaluated the effect of legumain inhibitors (e.g., esomeprazole) on RB, and the results suggest that esomeprazole may provide a reference for the clinical adjuvant treatment of RB. In conclusion, legumain can serve as an attractive target for RB therapy and hopefully provide new insights and ideas for the development of targeted drugs and precise personalized clinical therapy.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recoverina/genética , Recoverina/metabolismo , Recoverina/farmacologia , Esomeprazol/farmacologia , Qualidade de Vida , Regulação Neoplásica da Expressão Gênica , Movimento Celular , MicroRNAs/genética , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Retina/patologia
2.
Plant Dis ; 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35822893

RESUMO

Bletilla striata is an important Chinese herbal plant grown widely in southwest China (Qian et al. 2021). Leaf blight was found on cultivated bletilla crops in Yunnan in 2021. The disease infected bletilla leaves and it was present in the field from April to November with the highest incidence (86% plants diseased) recorded in early September in Puer area. Foliar lesions were circular (Φ0.5-1.8 cm) or oval, with pale-gray center and narrow gray-brown outer area surrounded by a yellow halo. The lesions coalesced later to form large irregular spots or blighted areas on leaves. Symptomatic bletilla leaves were sampled from fields in Jiangcheng (E101.8672o, N22.5803o) and Simao (E109.7816o, N22.7891o) counties, Yunnan in July 2021. Seven fungal isolates were obtained from (BJ01-BJ04) and Simao samples (HBJ05-HBJ07) via lesion-tissue culture and hypha-tip purification on PDA medium. A pathogenicity test following Koch's Postulates (Grimms et al. 2006) was conducted using each isolate by inoculating 45-day old bletilla plant (n=30, Zihua cultivar) in a greenhouse through spraying hypha-spore suspension (3.25×104 CFU/mL) prepared with 14 d fresh DNA culture. Non-inoculated plants (n=30) were used as controls. The experiment was repeated once. The isolates BJ02 and HBJ06 (deposited in Yunnan Agric. Univ. Microbes Herbarium) were shown pathogenic to bletilla since similar lesions formed on seedlings 7 d post inoculation and pure fungal cultures with the same colony morphology as those of BJ02 and HBJ06 were re-isolated from leaf lesions 14 dpi. Isolates BJ02 and HBJ06 produced identical colony and conidium morphology after they were incubated at 25oC for 7 d on PDA. Colonies were circular, pale brown, Φ5.5-7.5cm, with villous surface and abundant aerial hyphae. Mycelia were septate, colorless, Φ3-4 µm and with acute-angled branches. Conidiophores developed from hyphae were erect, septate, pale-brown colored and 60-200 µm long. Conidia (produced scarcely and ripened slowly) were long-oval or petaloid, straight or slightly curved, brown, sized 28-45×10-14 µm. Most conidia were divided into 4 cells by 3 septa; the middle two were bigger than the basal and apex cells. Both BJ02 and HBJ06 were identified as Curvularia sp. based on their morphological characters (Tan et al. 2018). The rDNA-ITS, TEF1α and GAPDH genes (Tan et al. 2018) were amplified from these isolates with PCR (White et al. 1990) and sequenced. ITS sequences of the two isolates were both 574 bp (acc. no. OL587997 & OL336480) and 100% (574/574 bp) identical shown by blast comparison. Further blast analyses of ITS (574 bp, OL587997), TEF1α (532 bp, ON637120) and GAPDH (881 bp, ON637121) from isolate BJ02 showed that they were 99.27% (547/551 bp), 100% (842/842 bp) and 99.8% (507/508 bp) identical respectively with those of Curvularia reesii BRIP4358 (MH414907). The 3 genes of BJ02 were concatenated and phylogenic analysis (Tamura et al, 2013) of the concatenated sequence with those of Curvularia spp. showed that BJ02 was clustered with C. reesii BRIP4358 on the same end-branch of the tree with 100% confidence. Therefore, BJ02 and HBJ06 are the same species identified as Curvularia reesii and it is the pathogen causing bletilla leaf blight. C. reesii was first isolated from the air in Australia in 1963 and was named by Tan et al. in 2018. It has not been reported as a plant pathogen elsewhere. This is the first record of this fungus causing bletilla leaf blight in China. Keywords: Bletilla striata; leaf blight; Curvularia reesii; disease symptoms; pathogen morphology; multigene identification References (1) D.J. Grimes. Microbes, 1(5): 223-228, 2006. (2) L.H. Qian et al. Jiangshu Agric. Sci. 49(19): 64-71, 2021. (3) K. Tamura et al. Mol. Bio. & Evol. 30 (12): 2725- 2729, 2013. (4) Y. P. Tan et al. MycoKeys, 35: 1-25. 2018. (5) T.J. White et al. In: PCR Protocols: A Guide to Methods and Applications (eds. M.A. Innis et al.), Acad. Press, Inc. New York. 315-322, 1990.

3.
Zhongguo Zhong Yao Za Zhi ; 39(23): 4608-14, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25911810

RESUMO

Near infrared (NIR) spectroscopy as a kind of rapid process analysis technology has been successfully applied in Chinese medicine pharmaceutical process. In this research, the technology was adopted to establish the rapid quantitative analysis models of main indicators from the Lonicera japonica and Artemisia annua alcohol precipitation process of Reduning injection. On-line NIR spectra of 142 samples from alcohol precipitation process were collected and the content of main indicators for each sample were detected through off-line HPLC. With eliminating outliers, determination of spectra pretreatment method and selecting optimal band, the NIR quantitative calibration model for each indicator was established using partial least squares (PLS). These models were used to predict the unknown samples from precipitation process of Reduning injection to achieve the goal of rapid detection. The results showed that the models were ideal. The correlation coefficients of models for neochlorogenic acid, chlorogenic acid, 4-O-caffeoylquinic acid and secoxyloganin were 0.973 872, 0.985 449, 0.975 509 and 0.979 790, respectively and their relative standard errors of prediction (RSEP) were 2.922 49%, 2.341 37%, 2.930 40% and 2.184 60%, respectively. This study indicated that the NIR quantitative calibration model showed good stability and precision, and it can be used in rapid quantitative detection of main indicators of efficacy in order to on-line monitor the alcohol precipitation process of Reduning injection.


Assuntos
Medicamentos de Ervas Chinesas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Precipitação Química , Cromatografia Líquida de Alta Pressão , Etanol/química , Lonicera/química , Controle de Qualidade
4.
Sheng Wu Gong Cheng Xue Bao ; 24(5): 793-802, 2008 May.
Artigo em Chinês | MEDLINE | ID: mdl-18724699

RESUMO

In order to expand gene resources and improve Brassica napus cultivars, protoplasts isolated from hypocotyls of Brassica napus cv. Huayou No. 3 and Eruca sativa were fused by PEG-high Ca2+-high pH. Fusion frequency was up to 18.2% when fusion system contained 5 x 10(5) protoplasts/mL, and when PEG concentration of fusion agents were 35% and when fusion time was 25 min. Then the fused protoplasts were cultured by the method of thin liquid layer at the density of 1 x 10(5) protoplasts/mL in improved KM8p medium supplemented with 1.0 mg/L 2,4-D, 0.5 mg/L NAA, 0.5 mg/L 6-BA, 200 mg/L inositol, 300 mg/L protein hydrolysate, and the combinations of 0.1 mol/L sucrose and 0.2 mol/L glucose and 0.2 mol/L mannitol for osmotic regulator, the frequency of callus regeneration was up to 6.8%. When the micro-calli transferred to the proliferation medium that contained B5 salts, 0.087 mol/L sucrose, 0.2 mg/L 2,4-D, 0.5 mg/L NAA, 0.2 mg/L 6-BA and 0.5% Agar, pH 5.8, have grown up to 3-5 mm of diameter, the calli were transferred to the differentiation medium that contained MS salts, 0.087 mol/L sucrose, 0.1 mg/L IAA, 0.8 mg/L 6-BA, 0.8% Agar, pH5.8, the shoots were regenerated in 4 weeks and its frequency was up to 32.8%. Then 2-3 cm shoots were transferred to 1/2 MS medium with 0.5 mg/L IBA+0.2mg/L 6-BA, plantlets were obtained in 14 days and the plantlet frequency was up to 88%. When the protoplasts of Eruca sativa were treated with UV radiation for 2 minutes calli and plantlets have been regenerated, treated for 4 min only calli have been regenerated, and treated for more than 5 min calli have not been regenerated. The callus regeneration and callus proliferation and plant regeneration from symmetric fusion were more than from asymmetric fusion. 16 hybrid plantlets have been regenerated on 21 piece of hybrid calli identified by cytology method.


Assuntos
Brassica/genética , Brassicaceae/genética , Hibridização Genética , Protoplastos , Fusão Celular , Células Híbridas , Regeneração , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA