Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrasonics ; 138: 107263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350312

RESUMO

Ischemic diseases due to arterial stenosis or occlusion are common and can have serious consequences if untreated. Therapeutic ultrasound like high-intensity focused ultrasound (HIFU) ablates tissues while low-intensity pulsed ultrasound (LIPU) promotes healing at relatively low temperatures. However, blood vessel cooling effect and reduced flow in ischemia impact temperature distribution and ultrasonic treatment efficacy. This work established a rabbit limb ischemia model by ligating the femoral artery, measuring vascular changes and temperature rise during LIPU exposures. Results showed the artery diameter was narrowed by 46.2% and the downstream velocity was reduced by 51.3% after ligation. Finite element simulations verified that the reduced flow velocity impaired heat dissipation, enhancing LIPU-induced heating. Simulation results also suggested the temperature rise was almost related linearly to vessel diameter but decayed exponentially with the increasing flow velocity. Findings indicate that the proposed model could be used as an effectively tool to model the heating effects in ischemic tissues during LIPU treatment. This research on relating varied ischemic flow to LIPU-induced thermal effects is significant for developing safe and efficacious clinical ultrasound hyperthermia treatment protocols for the patients with ischemic diseases.


Assuntos
Hipertermia Induzida , Terapia por Ultrassom , Animais , Humanos , Coelhos , Constrição Patológica , Terapia por Ultrassom/métodos , Isquemia/terapia , Ondas Ultrassônicas , Ultrassom
2.
ACS Appl Mater Interfaces ; 16(7): 8527-8537, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329426

RESUMO

Bleeding and bacterial infections are crucial factors affecting wound healing. The usage of herbal medicine-derived materials holds great potential for promoting wound healing. However, the uncertain intrinsic effective ingredients and unclear mechanism of action remain great concerns. Herein, inspired by the herbal medicine Ligusticum wallichii, we reported the synthesis of tetramethylpyrazine-derived carbon quantum dots (TMP-CQDs) for promoting wound healing. Of note, the use of TMP as the precursor instead of L. wallichii ensured the repeatability and homogeneity of the obtained products. Furthermore, TMP-CQDs exhibited high antibacterial activity. Mechanically, TMP-CQDs inhibited the DNA repair, biosynthesis, and quorum sensing of the bacteria and induced intracellular reactive oxygen species (ROS). Moreover, TMP-CQDs could accelerate blood coagulation through activating factor VIII and promoting platelet aggregation. Effective wound healing was achieved by using TMP-CQDs in the Staphylococcus aureus-infected mouse skin wound model. This study sheds light on the development of herbal medicine-inspired materials as effective therapeutic drugs.


Assuntos
Medicamentos de Ervas Chinesas , Pontos Quânticos , Camundongos , Animais , Carbono , Pontos Quânticos/uso terapêutico , Antibiose , Coagulação Sanguínea , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA