Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 112(3): 2194-2202, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31870711

RESUMO

SQUAMOSA promoter-binding protein (SBP)-box gene family is one kind of plant-specific transcription factor that plays important roles in the process of resisting abiotic stress. The SBP-box gene family has been studied in many species, but their functions are not yet clear in Camellia sinensis var. sinensis (CSS) (tea) plants. In our study, 25 SBP-box genes in the CSS were identified in the reference genome and classified into six groups based on a phylogenetic tree. The expression pattern of CsSBP genes under temperature stresses showed that CsSBPs were involved in the process of resisting temperature stresses. CsSBP8 had a positive effect on the anthocyanin accumulation during high temperature exposures, but CsSBP12 has a high correlation with anthocyanin accumulation during both high and low temperature. This study provides a foundation for the further study of CsSBP genes involved in the anthocyanin biosynthesis pathway during the temperature stress in tea.


Assuntos
Camellia sinensis/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Antocianinas/metabolismo , Camellia sinensis/metabolismo , Genoma de Planta , MicroRNAs/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de Proteína , Temperatura , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
2.
Tree Physiol ; 39(9): 1583-1599, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135909

RESUMO

To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar 'Suchazao' under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.


Assuntos
Camellia sinensis , Antocianinas , Vias Biossintéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Proteínas de Plantas , Espectrometria de Massas em Tandem , Temperatura , Transcriptoma
3.
Mar Drugs ; 16(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486413

RESUMO

This work aims to explore the amelioration of fucoidan on adenine-induced hyperuricemia and hepatorental damage. Adenine-induced hyperuricemic mice were administered with fucoidan, allopurinol and vehicle control respectively to compare the effects of the drugs. Serum uric acid, urea nitrogen, hepatorenal functions, activities of hepatic adenosine deaminase (ADA), xanthine oxidase (XOD), renal urate transporter 1 (URAT1) and NF-κB p65 were assessed. As the serum uric acid, urea nitrogen, creatinine, glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) data demonstrated, the adenine not only mediated hepatorenal function disorders, but also induced hyperuricemia in mice. Meanwhile, activities of hepatic ADA and XOD were markedly augmented by adenine, and the expression of URAT1 was promoted, which was conducive to the reabsorption of urate. However, exposure to fucoidan completely reversed those adenine-induced negative alternations in mice, and the activities of hepatic ADA and XOD were recovered to the normal level. It was obvious that hepatic and renal functions were protected by fucoidan treatment. The expression of URAT1 was returned to normal, resulting in an increase of renal urate excretion and consequent healing of adenine-induced hyperuricemia in mice. Expression and activation of NF-κB p65 was promoted in kidneys of adenine treated mice, but suppressed in kidneys of mice exposed to fucoidan from Laminaria japonica or allopurinol. In conclusion, the fucoidan is a potential therapeutic agent for the treatment of hyperuricemia through dual regulatory roles on inhibition of hepatic metabolism and promotion of renal excretion of urate.


Assuntos
Hiperuricemia/tratamento farmacológico , Laminaria/química , Polissacarídeos/farmacologia , Eliminação Renal/efeitos dos fármacos , Ácido Úrico/metabolismo , Adenina/toxicidade , Animais , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Creatinina/urina , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/urina , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Resultado do Tratamento , Ácido Úrico/sangue , Ácido Úrico/urina
4.
PLoS One ; 13(10): e0205891, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379951

RESUMO

Aconitum carmichaelii, commonly known as Fuzi, is a typical traditional Chinese medicine (TCM) herb that has been grown for more than one thousand years in China. Although root rot disease has been seriously threatening this crop in recent years, few studies have investigated root rot disease in Fuzi, and no pathogens have been identified. In this study, fungal libraries from rhizosphere soils were constructed by internal transcribed spacer (ITS) sequencing using the HiSeq 2500 high-throughput platform. A total of 948,843 tags were obtained from 17 soil samples, and these corresponded to 195,583,495 nt. At 97% identity, the libraries yielded 12,266 operational taxonomic units (OTUs), of which 97.5% could be annotated. In sick soils, Athelia, Mucor and Mortierella were the dominant fungi, comprising 10.3%, 10.1% and 7.7% of the fungal community, respectively. These fungi showed 2.6-, 1.53- to 6.31- and 1.38- to 2.65-fold higher enrichment in sick soils compared with healthy soils, and their high densities reduced the fungal richness in the areas surrounding the rotted Fuzi roots. An abundance analysis suggested that A. rolfsii and Mucor racemosus, as the dominant pathogens, might play important roles in the invading Fuzi tissue, and Phoma adonidicola could be another pathogenic fungus of root rot. In contrast, Mortierella chlamydospora, Penicillium simplicissimum, Epicoccum nigrum, Cyberlindnera saturnus and Rhodotorula ingeniosa might antagonize root rot pathogens in sick soils. In addition, A. rolfsii was further verified as a main pathogen of Fuzi root rot disease through hypha purification, morphological observation, molecular identification and an infection test. These results provide theoretical guidance for the prevention and treatment of Fuzi root rot disease.


Assuntos
Aconitum/microbiologia , DNA Fúngico/genética , DNA Intergênico/genética , Fungos/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biodiversidade , Etiquetas de Sequências Expressas , Fungos/classificação , Fungos/isolamento & purificação , Fungos/patogenicidade , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mortierella/classificação , Mortierella/genética , Mortierella/isolamento & purificação , Mortierella/patogenicidade , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação , Penicillium/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Rizosfera , Rhodotorula/classificação , Rhodotorula/genética , Rhodotorula/isolamento & purificação , Rhodotorula/patogenicidade , Saccharomycetales/classificação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/patogenicidade , Solo/química
5.
Zhongguo Zhong Yao Za Zhi ; 41(19): 3602-3608, 2016 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-28925155

RESUMO

An MSAP analysis method was established for detecting DNA methylation of Aconitum carmichaeli leaves, and the DNA methylation of different leaf shapes and different leaf position was analyzed by MSAP. The study made experiments on the leaves of different position of mosaic and moxa leaf type A. carmichaeli, researched the effects of restriction digestion of genomic DNA by using two restriction enzymes, screened the suitable selective amplification primers, and analyzed the methylation differences of leaves by calculating the 6% acrylamide gel electrophoresis bands and lane. The best reaction system of MSAP was obtained, under the conditions of 37 ℃, the 16 h incubated time was more suitable for 150 ng DNA, and 25 pairs of selective amplification primers were selected from 256 pairs. Totally, 273 electrophoresis bands were obtained by 25 pairs of selective primers, including 228 non methylation or single chain methylation bands,27 double chain methylation bands,and 18 single stranded methylation bands, the total methylation rate was 16.48%. The methylation rate was slightly different in mosaic and moxa leaf type A. carmichaeli leaf, which were 15.36%, 14.34%, respectively, and article 8, article 6 nucleotide fragments of genome methylation modification differences were obtained, accounted for 3%, 2.26% of the total number of bands. Based on this study it can provide new ideas for molecular identification, breeding and cultivation, and genetic evolution of A. carmichaeli.


Assuntos
Aconitum/genética , Metilação de DNA , DNA de Plantas/genética , Primers do DNA
6.
Mitochondrial DNA B Resour ; 1(1): 893-894, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33473669

RESUMO

The complete chloroplast genome sequence of an important medicinal plant of the family Ranunculaceae, Aconitum carmichaelii Debx., was characterized in this study. The assembled chloroplast genome was 154,776 bp in length, which included a large single-copy (LSC), a small single-copy (SSC), and two inverted repeat (IR) regions of 86,330bp, 15,986 bp, and 26,193 bp, respectively. The GC content of the genome was 38.1%. Phylogenetic analysis with the whole nucleotide sequences of reported Aconitum chloroplast genomes indicated a close relationship of A. carmichaelii with A. kusnezoffii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA