Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(9): 3980-3989, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808949

RESUMO

Nanopesticides are considered to be a promising alternative strategy for enhancing bioactivity and delaying the development of pathogen resistance to pesticides. Here, a new type of nanosilica fungicide was proposed and demonstrated to control late blight by inducing intracellular peroxidation damage to Phytophthora infestans, the pathogen associated with potato late blight. Results indicated that the structural features of different silica nanoparticles were largely responsible for their antimicrobial activities. Mesoporous silica nanoparticles (MSNs) exhibited the highest antimicrobial activity with a 98.02% inhibition rate of P. infestans, causing oxidative stress responses and cell structure damage in P. infestans. For the first time, MSNs were found to selectively induce spontaneous excess production of intracellular reactive oxygen species in pathogenic cells, including hydroxyl radicals (•OH), superoxide radicals (•O2-), and singlet oxygen (1O2), leading to peroxidation damage in P. infestans. The effectiveness of MSNs was further tested in the pot experiments as well as leaf and tuber infection, and successful control of potato late blight was achieved with high plant compatibility and safety. This work provides new insights into the antimicrobial mechanism of nanosilica and highlights the use of nanoparticles for controlling late blight with green and highly efficient nanofungicides.


Assuntos
Fungicidas Industriais , Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/fisiologia , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA