Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phytomedicine ; 109: 154565, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610125

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality rates. E2F2 is an independent predictor of poor prognosis in HCC; however, The mechanism by which E2F2 promotes the progression of HCC remains unclear. The Shentao Ruangan (STR) formula exhibits antitumor efficacy against HCC; however, the underlying antitumor mechanisms remain unknown. PURPOSE: To explore the regulatory effect of E2F2 on the p53 signaling pathway and reveal the role and mechanism of STR in promoting cell apoptosis via the E2F2-p53 signaling pathway in HCC. METHODS: E2F2 overexpression or silencing by lentivirus in HepG2 cells were used to explore their influence on apoptosis and the p53 pathway. An H22 tumor-bearing mice model was used to determine the therapeutic efficacy of STR and its effects on the E2F2-p53 pathway. STR-mediated serum (STR-MS) was prepared, and its chemical constituents were identified using mass spectrometry. The effects of STR-MS on viability and apoptosis of HepG2 cells and the E2F2-p53 pathway were investigated and validated using rescue experiments. RESULTS: E2F2 overexpression significantly inhibited apoptosis and the p53 pathway in HepG2 cells, whereas E2F2-silenced HepG2 cells showed the reverse. This increased apoptosis was rescued by the addition of a p53 inhibitor (PFT-α) to E2F2-silenced HepG2 cells. In vivo, high doses of STR could remarkably inhibit the growth of xenografts, promote the apoptosis of hepatoma cells, downregulate E2F2, and activate the p53-dependent mitochondrial apoptotic pathway with good safety. In vitro, STR-MS exhibited similar effectiveness, and the best effect was achieved at 30% STR-MS concentration for 48 h. When 30% STR-MS was added to E2F2-overexpressing cells, the increased apoptosis and expression of key proteins in the p53-dependent mitochondrial apoptosis pathway were significantly rescued. CONCLUSION: Our findings demonstrate, for the first time, that E2F2 inhibits hepatoma cell apoptosis in a p53-dependent manner and that STR may promote apoptosis by regulating the E2F2-p53 pathway in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Proliferação de Células , Apoptose , Células Hep G2 , Fator de Transcrição E2F2/metabolismo
2.
Front Pharmacol ; 13: 926945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059938

RESUMO

Dysregulated immune response plays a pivotal role in Ulcerative colitis. In lamina propria of inflammatory colonic mucosa, macrophages tend to polarize into M1 type and metabolically reprogram to aerobic glycolysis. PKM2 orchestrates glucose metabolic switch in macrophages, which tetramer has high pyruvate kinase activity, while which dimer mainly works as a protein kinase to stabilize HIF-1α and mediate anabolism. Shikonin is a potent PKM2 inhibitor derived from traditional Chinese medicine Arnebiae Radix with anti-inflammatory and anticarcinogen activities. However, it is unclear which conformation of PKM2 is inhibited by Shikonin, and whether this inhibition mediates pharmacological effect of Shikonin. In this study, we examined the efficacy of Shikonin on dextran sulfate sodium-induced mice colitis and determined the states of PKM2 aggregation after Shikonin treatment. Results showed that Shikonin dose-dependently alleviated mice colitis, down-regulated expression of F4/80, iNOS and CD86, decreased IFN-γ, IL-1ß, IL-6 and TNF-α, while increased IL-10 in mice colon. Furthermore, Shikonin suppressed the pyruvate, lactate production and glucose consumption, inhibited the pyruvate kinase activity and nuclear translocation of PKM2, and decreased both dimerization and tetramerization of PKM2 in macrophages. In vitro assay revealed that Shikonin bounded to PKM2 protein, inhibited the formation of both dimer and tetramer, while promoted aggregation of PKM2 macromolecular polymer. TEPP-46, an activator of PKM2 tetramerization, attenuated the ameliorative effect of Shikonin on disuccinimidyl suberate mice. In summary, Shikonin improved mice colitis, which mechanism may be mediated by inhibiting dimerization and tetramerization of PKM2, suppressing aerobic glycolysis reprogram, improving mitochondrial dynamic, and therefore alleviating inflammatory response of macrophages.

3.
Dis Markers ; 2022: 4399334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899176

RESUMO

Evodiae fructus (EF) is a traditional Chinese medicine which is widely used for the treatment of obesity, inflammation, cardiovascular disease, and diseases of the central nervous system. Recent studies have demonstrated the anticancer property of EF, but the active compounds of EF against prostate cancer and its underlying mechanism remain unknown. In this study, a network pharmacology-based approach was used to explore the multiple ingredients and targets of EF. Through protein-protein interaction (PPI), Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the potential targets and corresponding ingredients of EF against prostate cancer cells were obtained. CCK8 and colony formation assays were performed to evaluate the antiproliferative effect of the active compounds on DU145 cells. Cell cycle analysis, Annexin V-FITC/PI staining assay, and Hoechst 33258 staining assay were used to explore the way of evodiamine-induced cell death. The capacities of cell migration after evodiamine treatment were evaluated by wound-healing assay. PharmMapper database was used to predict the potential targets of evodiamine against cancer cell migration. Western blot assay was performed to investigate the signaling pathway through which evodiamine inhibits cell proliferation and migration. The binding of evodiamine to PI3K and AKT was verified by molecular docking. As a consequence, 24 active compounds and 141 corresponding targets were obtained through a network pharmacology-based approach. The results of PPI analysis, GO enrichment, and KEGG pathway enrichment indicated that molecules in the PI3K/AKT/NF-κB signaling pathway were the potential targets of EF against prostate cancer, and evodiamine was the potential active compound. In vitro study demonstrated that evodiamine displays antiproliferative effect on DU145 cells obviously. Evodiamine induces G2/M cell cycle arrest by Cdc25c/CDK1/cyclin B1 signaling. Additionally, evodiamine also promotes mitochondrial apoptosis and inhibits cell migration through PI3K/AKT/NF-κB signaling in DU145 cells. In conclusion, evodiamine is the active compound of EF to inhibit proliferation and migration of prostate cancer through PI3K/AKT/NF-κB signaling pathway, indicating that evodiamine may serve as a potential lead drug for prostate cancer treatment.


Assuntos
Medicamentos de Ervas Chinesas , Evodia , Neoplasias da Próstata , Linhagem Celular Tumoral , Proliferação de Células , Medicamentos de Ervas Chinesas/farmacologia , Evodia/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas , Transdução de Sinais
4.
Phytomedicine ; 94: 153821, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752967

RESUMO

BACKGROUND: He-Chan Pian (HCP), a traditional Chinese medicinal formula, shows promising efficacy for the treatment of lung cancer. PURPOSE: Gremlin (GREM1) plays an important role in gastrointestinal tumor metastasis; however, little is known about its role in lung cancer. We determined the mechanism underlying the protective effect of HCP against metastasis in a mouse model of non-small cell lung cancer (NSCLC) and demonstrated the role of GREM1. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the herbal components and metabolites from the serum of HCP-treated mice. The tumor, liver, and kidney were examined histologically, and the antitumor effects and toxicity of HCP were evaluated. Levels of epithelial-mesenchymal transition (EMT)-associated transcription factors were measured using western blotting in tumors from five groups (i.e., model, HCP [L], HCP [M], HCP [H], and positive control [cisplatin, DDP]). Differentially expressed proteins and genes were identified using protein chip and sequencing analyzes, respectively. Short hairpin RNAs and overexpression plasmids were introduced into cells to evaluate the effects of GREM1. To evaluate proliferation, migration, and invasion, the expression levels of proteins involved in the Rap1 pathway and EMT were measured in vitro. Xenograft tumors with overexpression-GREM1 (OE-GREM1) in A549 cells were examined for cell proliferation. A dual-luciferase assay was performed to verify the direct interaction of GREM1 with miR-205-5p in lung cancer. RESULTS: Thirty-six ingredients and bioactive constituents detected in the serum of HCP-treated mice were identified as the key compounds involved in the inhibition of tumor growth. Animal experiments revealed that HCP significantly decreased tumor volumes and had no adverse effects on the liver or kidney or side effects. GREM1 upregulation was closely related to tumor metastasis and was regulated by miR-205-5p, as confirmed using a dual-luciferase reporter assay. OE-GREM1 promoted A549 cell migration and invasion, promoted EMT, and increased the expression of Rap1 pathway intermediaries, whereas shGREM1 had the opposite effects. Furthermore, the effects of OE-GREM1 on proliferation in the A549 xenograft mouse model were attenuated, although HCP has an inhibitory effect on tumors. CONCLUSION: Our results suggest that HCP contributes to the inhibition of NSCLC metastasis via the Gremlin/Rap1 signaling pathway regulated by miR-205-5p.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
Phytother Res ; 35(7): 3836-3847, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33792976

RESUMO

Melanoma is the most common type of skin cancer. Signal transducer and activator of transcription 3 (STAT3) signaling has been demonstrated to be a therapeutic target for melanoma. Dauricine (Dau), an alkaloid compound isolated from the root of Menispermum dauricum DC., has shown tumor-suppressing effects in multiple human cancers, but its potential in melanoma remains unexplored. In this study, we demonstrated that Dau significantly inhibited the viability and proliferation of A375 and A2058 melanoma cells. Death of melanoma cells was also markedly promoted by Dau. Moreover, Dau inhibited phosphorylation-mediated activation of STAT3 and Src in a dose-dependent manner. Notably, constitutive activation of Src partially abolished the antiproliferative and cytotoxic activities of Dau on melanoma cells. Molecular docking showed that Dau could dock on the kinase domain of Src with a binding energy of -10.42 kcal/mol. Molecular dynamics simulations showed that Src-Dau binding was stable. Surface plasmon resonance imaging analysis also showed that Dau has a strong binding affinity to Src. In addition, Dau suppressed the growth of melanoma cells and downregulated the activation of Src/STAT3 in a xenograft model in vivo. These data demonstrated that Dau inhibits proliferation and promotes cell death in melanoma cells by inhibiting the Src/STAT3 pathways.


Assuntos
Benzilisoquinolinas/farmacologia , Melanoma , Proteínas Proto-Oncogênicas pp60(c-src) , Fator de Transcrição STAT3 , Tetra-Hidroisoquinolinas/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Artigo em Inglês | MEDLINE | ID: mdl-35126596

RESUMO

Major depressive disorder (MDD) has become the second most common disease worldwide, making it a threat to human health. Cyperi Rhizoma (CR) is a traditional herbal medicine with antidepressant properties. Traditional Chinese medicine theory states that CR relieves MDD by dispersing stagnated liver qi to soothe the liver, but the material basis and underlying mechanism have not been elucidated. In this study, we identified the active compounds and potential anti-MDD targets of CR by network pharmacology-based approaches. Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, we hypothesized that the anti-MDD effect of CR may be mediated by an altered response of the liver to lipopolysaccharide (LPS) and glucose metabolism. Through bioinformatics analysis, comparing normal and MDD liver tissue in rats with spontaneous diabetes, we identified differentially expressed genes (DEGs) and selected PAI-1 (SERPINE1) as a target of CR in combating MDD. Molecular docking and molecular dynamics analysis also verified the binding of the active compound quercetin to PAI-1. It can be concluded that quercetin is the active compound of CR that acts against MDD by targeting PAI-1 to enhance the liver response to LPS and glucose metabolism. This study not only reveals the material basis and underlying mechanism of CR against MDD through soothing the liver but also provides evidence for PAI-1 as a potential target and quercetin as a potential agent for MDD treatment.

7.
J Ethnopharmacol ; 266: 113443, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chansu, dried secretions from Bufonidae, has long been used for cancer treatment as a traditional Chinese medicine. In searching for effective anti-hepatoma agents from Chansu, our preliminary drug screening found that a bufadienolide, namely 1ß-hydroxyl-arenobufagin (1ß-OH-ABF), displays anti-hepatoma activities. However, the anti-hepatoma effects and molecular mechanisms of 1ß-OH-ABF have not been defined. AIM OF THE STUDY: To evaluate the anti-hepatoma activity of 1ß-OH-ABF against liver cancer Hep3B and HepG2 cells in vitro and in vivo, as well as explore the underlying mechanisms. MATERIALS AND METHODS: The anti-proliferative effects of 1ß-OH-ABF on liver cancer Hep3B, HepG2, HuH7, SK-HEP-1 and normal hepatocyte LO2 cells were examined by MTT assay and colony formation assay. Hoechst 33258 staining and Annexin V-FITC/PI staining assay were used to analyze apoptosis induced by 1ß-OH-ABF. The collapse of the mitochondrial membrane potential (ΔΨm) was detected by JC-1 staining assay. Western blotting was used to examine the expression levels of targeted proteins. The role of mTOR in 1ß-OH-ABF-induced apoptosis was investigated using small interfering RNA (siRNA) transfection. Zebrafish xenograft model was established to evaluate the anti-hepatoma effects of 1ß-OH-ABF in vivo. RESULTS: We found that 1ß-OH-ABF inhibits the proliferation of Hep3B, HepG2, HuH7, SK-HEP-1 cells but has little cytotoxicity towards LO2 cells. 1ß-OH-ABF induces mitochondria dysfunction and triggers mitochondria apoptotic pathway, which is accompanied by the loss of ΔΨm, upregulation and translocation of Bax, as well as cleavages of caspase-9, caspase-3 and PARP. Mechanistically, 1ß-OH-ABF markedly decreases the expression level of p-AKT/AKT and p-mTOR (Ser2248 and Ser2481)/mTOR in a time-dependent manner. Inhibition of mTOR by siRNA strengthens 1ß-OH-ABF-mediated apoptosis. Critically, 1ß-OH-ABF shows a marked in vivo anti-hepatoma effect on human Hep3B cell xenografts in zebrafish model. CONCLUSION: 1ß-OH-ABF induces mitochondrial apoptosis through the suppression of mTOR signaling in vitro and in vivo, indicating that 1ß-OH-ABF may serve as a potential agent for the treatment of liver cancer.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Bufanolídeos/química , Bufanolídeos/isolamento & purificação , Carcinoma Hepatocelular/patologia , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
Artigo em Inglês | MEDLINE | ID: mdl-32382311

RESUMO

Arenobufagin (ARE) has demonstrated potent anticancer activity in various types of tumor, but the role and mechanism of ARE for lung cancer remain unclear. Oxidative stress exists under normal conditions and is an inevitable state in the body. A variety of noxious stimuli can break the equilibrium state of oxidative stress and promote apoptosis. Here, we used a CCK-8 assay to examine cell viability. We determined oxidative stress damage by measuring levels of intracellular ROS and levels of GSH, SOD, and MDA. Annexin V-FITC/PI double staining assay, as well as the Hoechst 33258 staining, was used to detect ARE-induced apoptosis in A549 cell. Evaluation of the expression level of the specified molecule was indicated by Western blot and qRT-PCR. Loss of function experiment was carried out using NAC pretreatment. The experimental results show that ARE significantly declines in the viability of A549 cells and increases the apoptosis rate of A549 cells. As reflected in cell morphology, the A549 cells showed features of shrinkage and had incompletely packed membranes; the same phenomenon is manifested in Hoechst 33258 staining. Following ARE treatment, the ROS level in A549 cells was rising in a concentration-dependent manner, and so were MDA and GSH levels, while the SOD level was decreasing. Moreover, we found that ARE can decrease mitochondrial membrane potential (MMP), and a cascade of apoptotic processes can be triggered by decreased MMP. Importantly, we found significant changes in protein expression levels and mRNA levels of apoptosis-related proteins. Furthermore, when we used NAC to restrain oxidative stress, the expression levels of apoptosis-related proteins have also changed accordingly. Our data demonstrate that apoptosis in the non-small-cell lung cancer (NSCLC) cell line A549 is caused by oxidative stress due to ARE. Our research also shows that ARE may have the potential to become a targeted therapeutic for the treatment of NSCLC in the future.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30271456

RESUMO

Non-small cell lung cancer (NSCLC) is a serious threat to people's health. This study aims to determine the possible effect of Gujin Xiaoliu Tang (GJXLT) on NSCLC, which is an empirical formula from Professor Dai-Han Zhou. In this study, chromatographic fingerprinting of GJXLT and A549 cell model in vitro and in vivo was established. We cultured A549 cells in vitro and found that GJXLT inhibited A549 cell growth and induced apoptosis. Compared with the control group, the expression of p-STAT3 and VEGF proteins in the GJXLT groups was decreased. Similar findings were also observed in vivo. First, GJXLT inhibited the growth of transplanted tumor and did not reduce the weight of the tumor-bearing mice in comparison with that of the control group. Then, the Ki-67 expression of transplanted tumor in the GJXLT groups was decreased. In addition, the apoptosis rate of transplanted tumor in the GJXLT groups was increased. Overall, our data showed that GJXLT inhibited A549 cell proliferation and induced apoptosis in vivo and in vitro. Furthermore, GJXLT inhibited the growth of lung cancer xenograft in nude mice model with no obvious side effects. The anti-tumor effect of GJXLT might also be related to the inhibition of p-STATS and VEGF expression in the JAK2/STAT3 pathway. Our results demonstrated the potential of GJXLT as a novel treatment for NSCLC.

10.
Chin J Integr Med ; 20(7): 496-502, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24972577

RESUMO

OBJECTIVE: To observe the efficacy and the influence on quality of life (QOL) of syndrome differentiation treatment with Chinese medicine (CM) for opioid-induced constipation as well as the safety and influence on analgesic effect of opioids. METHODS: Totally 406 cases enrolled from 53 collaborating medical centers were randomly assigned to a CM group and a control group. The CM group were treated with CM decoction based on syndrome differentiation, and the control group were treated with Phenolphthalein Tablet. Both groups were treated for 14 days. Cleveland constipation score (CCS), numerical rating scale (NRS) of pain and Chinese version of European Organisation for Research and Treatment of Cancer, Quality of Life Questionnaire-C30 V3.0 (EORTC QLQ-C30 V3.0) were used to evaluate the efficacy, pain controlled and QOL status. RESULTS: The comparisons of CCS score reduction and QOL between the two groups after treatment suggested that the improvements of constipation and QOL in the CM group were better than that in the control group (P<0.05). The total efficiency of the CM group was better than the control group (93.5% vs. 86.4%, P<0.05). There was no significant difference in NRS scores between before and after treatment in both groups. There was no serious drug-related adverse event during the course of study. CONCLUSION: CM decoction could effectively treat opioid-induced constipation and improve patients' QOL at the same time. It is safe and doesn't affect the analgesic effect of opioids when treating constipation.


Assuntos
Analgésicos Opioides/efeitos adversos , Constipação Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Neoplasias/complicações , Dor Intratável/tratamento farmacológico , Idoso , Analgésicos Opioides/administração & dosagem , Constipação Intestinal/induzido quimicamente , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenolftaleína/administração & dosagem , Qualidade de Vida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA