Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhonghua Shao Shang Za Zhi ; 38(4): 354-362, 2022 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-35462514

RESUMO

Objective: To investigate the regulatory effects of bio-intensity electric field on the transformation of human skin fibroblasts (HSFs). Methods: The experimental research methods were used. HSFs were collected and divided into 200 mV/mm electric field group treated with 200 mV/mm electric field for 6 h and simulated electric field group placed in the electric field device without electricity for 6 h. Changes in morphology and arrangement of cells were observed in the living cell workstation; the number of cells at 0 and 6 h of treatment was recorded, and the rate of change in cell number was calculated; the direction of cell movement, movement velocity, and trajectory velocity within 3 h were observed and calculated (the number of samples was 34 in the simulated electric field group and 30 in 200 mV/mm electric field group in the aforementioned experiments); the protein expression of α-smooth muscle actin (α-SMA) in cells after 3 h of treatment was detected by immunofluorescence method (the number of sample was 3). HSFs were collected and divided into simulated electric field group placed in the electric field device without electricity for 3 h, and 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group which were treated with electric fields of corresponding intensities for 3 h. Besides, HSFs were divided into simulated electric field group placed in the electric field device without electricity for 6 h, and electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group treated with 200 mV/mm electric field for corresponding time. The protein expressions of α-SMA and proliferating cell nuclear antigen (PCNA) were detected by Western blotting (the number of sample was 3). Data were statistically analyzed with Mann-Whitney U test, one-way analysis of variance, independent sample t test, and least significant difference test. Results: After 6 h of treatment, compared with that in simulated electric field group, the cells in 200 mV/mm electric field group were elongated in shape and locally adhered; the cells in simulated electric field group were randomly arranged, while the cells in 200 mV/mm electric field group were arranged in a regular longitudinal direction; the change rates in the number of cells in the two groups were similar (P>0.05). Within 3 h of treatment, the cells in 200 mV/mm electric field group had an obvious tendency to move toward the positive electrode, and the cells in simulated electric field group moved around the origin; compared with those in simulated electric field group, the movement velocity and trajectory velocity of the cells in 200 mV/mm electric field group were increased significantly (with Z values of -5.33 and -5.41, respectively, P<0.01), and the directionality was significantly enhanced (Z=-4.39, P<0.01). After 3 h of treatment, the protein expression of α-SMA of cells in 200 mV/mm electric field group was significantly higher than that in simulated electric field group (t=-9.81, P<0.01). After 3 h of treatment, the protein expressions of α-SMA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were 1.195±0.057, 1.606±0.041, and 1.616±0.039, respectively, which were significantly more than 0.649±0.028 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of α-SMA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly increased (P<0.01). The protein expressions of α-SMA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were 0.730±0.032, 1.561±0.031, and 1.553±0.045, respectively, significantly more than 0.464±0.020 in simulated electric field group (P<0.01). Compared with that in electric field treatment 1 h group, the protein expressions of α-SMA in electric field treatment 3 h group and electric field treatment 6 h group were significantly increased (P<0.01). After 3 h of treatment, compared with that in simulated electric field group, the protein expressions of PCNA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 100 mV/mm electric field group, the protein expressions of PCNA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 200 mV/mm electric field group, the protein expression of PCNA of cells in 400 mV/mm electric field group was significantly decreased (P<0.01). Compared with that in simulated electric field group, the protein expressions of PCNA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were significantly decreased (P<0.01); compared with that in electric field treatment 1 h group, the protein expressions of PCNA of cells in electric field treatment 3 h group and electric field treatment 6 h group were significantly decreased (P<0.05 or P<0.01); compared with that in electric field treatment 3 h group, the protein expression of PCNA of cells in electric field treatment 6 h group was significantly decreased (P<0.01). Conclusions: The bio-intensity electric field can induce the migration of HSFs and promote the transformation of fibroblasts to myofibroblasts, and the transformation displays certain dependence on the time and intensity of electric field.


Assuntos
Eletricidade , Fibroblastos , Pele , Actinas/biossíntese , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Terapia por Estimulação Elétrica , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Pele/citologia
2.
J Anim Physiol Anim Nutr (Berl) ; 96(5): 930-8, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21848844

RESUMO

Two experiments were carried out in this study. Experiment 1 was conducted to examine the effects of several supplemental Chinese herbs on antioxidant function and slaughtered body weight in sheep. Results indicated that Fructus Ligustri Lucidi supplementation improved the blood antioxidant function [higher concentration of glutathione reductase (GR), superoxide dismutase and lower concentration of malondialdehyde] and slaughtered body weight in sheep (p < 0.05). Experiment 2 was conducted to investigate the effect of Fructus Ligustri Lucidi extract (FLLE) on rumen fermentation and nutrient digestibility in sheep. Four levels of FLLE treatments, i.e. 0, 100, 300 and 500 mg/kg dry matter (DM), were used in this part. Addition of FLLE at 300 or 500 mg/kg DM increased total volatile fatty acid (VFA) concentration and propionate proportion, decreased ammonia-N concentration in the ruminal fluid, reduced blood urea nitrogen concentration at 2, 4, 6 and 8 h after morning feeding (p < 0.05). Addition of FLLE at all dosages had no effect on ruminal pH value and acetate concentration at all sampling time points in sheep (p > 0.05). Dynamic degradation coefficient c of maize DM was significantly increased by supplementing FLLE at 300 or 500 mg/kg DM (p < 0.05). Fructus Ligustri Lucidi extract addition had no effect on degradation coefficients a, b, c of DM and nitrogen of soybean meal; a, b of maize DM; a, b, c of maize nitrogen; and a, b, c of neutral detergent fibre (NDF) and acid detergent fibre (ADF) of Chinese wildrye (p > 0.05). Addition of FLLE at 300 or 500 mg/kg DM increased DM and organic matter digestibility of diet (p < 0.05). Fructus Ligustri Lucidi extract addition had no effect on digestibility of diet's NDF, ADF and crude protein (p > 0.05). From the aforementioned results, it is indicated that FLLE improved antioxidant status and slaughtered body weight. Fructus Ligustri Lucidi extract addition has capability to modulate rumen fermentation, increase the maize degradation rate, total volatile fatty acid concentration and propionate proportion in sheep.


Assuntos
Antioxidantes/metabolismo , Digestão/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Rúmen/efeitos dos fármacos , Ovinos/metabolismo , Ácido Acético , Animais , Nitrogênio da Ureia Sanguínea , Ácidos Graxos Voláteis/metabolismo , Feminino , Fermentação/efeitos dos fármacos , Nitrogênio/metabolismo , Propionatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA