Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene ; 913: 148356, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38462022

RESUMO

Horseflies from the Tabanidae family play a significant role in traditional Chinese medicine to treat various health conditions, including coronary heart disease, stroke, headaches, liver cirrhosis, psoriasis, and hepatic carcinoma. There are 27 species of Tabaninae (Tabanidae) used as medicine, and they showed high morphological similarities with those for which medicinal properties have not been reported. Nonetheless, there have been reports suggesting that medicinal crude drugs sometimes contain irrelevant or false species, impacting the drug's efficacy. In this current study, we collected 14 batches, totaling 13,528 individuals, from various provinces in China. Instead of "classic" DNA barcoding strategy, we employed a high-throughput metabarcoding approach to assess the biological composition of crude drug mixtures derived from horseflies. Our analysis identified 40 Amplicon Sequence Variants (ASVs) with similarity percentages ranging from 92% to 100% with 12 previously reported species. Species delimitation methods revealed the presence of 11 Molecular Operational Taxonomic Units (MOTUs), with ten belonging to the Tabanus genus and one to Hybomitra. Tabanus sp6 displayed the highest relative abundance, and its ASVs showed close resemblance to Tabanus pleski. Our investigations revealed that the medicinal batches were biologically composed of 6 to 12 species. Some batches contained ASVs that closely resembled species previously associated with false Tabanus species. In conclusion, our findings offer valuable insights into the biological composition of crude drugs derived from horseflies and have the potential to enhance the quality of these traditional medicines.


Assuntos
Dípteros , Humanos , Animais , Dípteros/genética , Biodiversidade , China , Código de Barras de DNA Taxonômico
2.
Gene ; 910: 148303, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38401835

RESUMO

Grubs, called Qicao in China, have a long tradition as herbal medicine in East Asia. These larvae belong to the diverse family Scarabaeidae and are typically harvested from the wild during their immature stage based on morphological characteristics. However, rapid and accurate identification becomes challenging when relying solely on external morphological features, as the lack of clarity on biological sources raises safety concerns for clinical applications. The application of DNA metabarcoding provides a solution by enabling the determination of the biological source of a large sample. In the current study, we collected 19 batches of Grubs, consisting of 11,539 individuals, from the market and analyzed their biological composition through metabarcoding. We identified 49 Amplicon Sequence Variants (ASVs), 21 of which were Grubs. The 21 ASVs were classified into seven Molecular Operational Taxonomic Units (MOTUs) through species delimitation, which revealed that commercially available Grubs are predominantly sourced from Protaetia brevitarsis seulensis, while species of Rutelinae, Anomala, and Holotrichia were also abundant in some commercial batches. Among the identified ASVs, 28 belonged to non-Grub species and indicated adulteration from different animal families; high abundances of these ASVs were detected for Bombycidae, Tabanidae, and Viviparidae. Our findings underscore the complexity of Grubs' species composition and advocate for a deeper understanding of the wildlife sources contributing to herbal products. This research contributes valuable insights into the molecular identification of Grubs, paving the way for enhanced quality assurance in traditional medicine applications to provide safe and effective medicines for humanity.


Assuntos
Besouros , Plantas Medicinais , Animais , Larva/genética , Medicina Tradicional , Extratos Vegetais , Plantas Medicinais/genética
3.
Protein Expr Purif ; 216: 106430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38184160

RESUMO

Pq3-O-UGT2, derived from Panax quinquefolius, functions as a ginsenoside glucosyltransferase, utilizing UDP-glucose (UDPG) as the sugar donor to catalyze the glycosylation of Rh2 and F2. An essential step in comprehending its catalytic mechanism involves structural analysis. In preparation for structural analysis, we expressed Pq3-O-UGT2 in the Escherichia coli (E. coli) strain Rosetta (DE3). The recombinant Pq3-O-UGT2 was purified through Ni-NTA affinity purification, a two-step ion exchange chromatography, and subsequently size-exclusion chromatography (SEC). Notably, the purified Pq3-O-UGT2 showed substantial activity toward Rh2 and F2, catalyzing the formation of Rg3 and Rd, respectively. This activity was discernible within a pH range of 4.0-9.0 and temperature range of 30-55 °C, with optimal conditions observed at pH 7.0-8.0 and 37 °C. The catalytic efficiency of Pq3-O-UGT2 toward Rh2 and F2 was 31.43 s-1 mΜ-1 and 169.31 s-1 mΜ-1, respectively. We further crystalized Pq3-O-UGT2 in both its apo form and co-crystalized forms with UDPG, Rh2 and F2, respectively. High-quality crystals were obtained and X-ray diffraction data was collected for all co-crystalized samples. Analysis of the diffraction data revealed that the crystal of Pq3-O-UGT2 co-crystalized with UDP-Glc belonged to space group P1, while the other two crystals belonged to space group P212121. Together, this study has laid a robust foundation for subsequent structural analysis of Pq3-O-UGT2.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Glicosiltransferases , Uridina Difosfato Glucose , Panax/genética , Panax/química , Panax/metabolismo , Cristalização , Escherichia coli/genética , Escherichia coli/metabolismo
4.
J Integr Plant Biol ; 64(9): 1739-1754, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35731022

RESUMO

The ginsenoside Rg3 found in Panax species has extensive pharmacological properties, in particular anti-cancer effects. However, its natural yield in Panax plants is limited. Here, we report a multi-modular strategy to improve yields of Rg3 in a Panax ginseng chassis, combining engineering of triterpene metabolism and overexpression of a lignin biosynthesis gene, phenylalanine ammonia lyase (PAL). We first performed semi-rational design and site mutagenesis to improve the enzymatic efficiency of Pq3-O-UGT2, a glycosyltransferase that directly catalyzes the biosynthesis of Rg3 from Rh2 . Next, we used clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to knock down the branch pathway of protopanaxatriol-type ginsenoside biosynthesis to enhance the metabolic flux of the protopanaxadiol-type ginsenoside Rg3 . Overexpression of PAL accelerated the formation of the xylem structure, significantly improving ginsenoside Rg3 accumulation (to 6.19-fold higher than in the control). We combined overexpression of the ginsenoside aglycon synthetic genes squalene epoxidase, Pq3-O-UGT2, and PAL with CRISPR/Cas9-based knockdown of CYP716A53v2 to improve ginsenoside Rg3 accumulation. Finally, we produced ginsenoside Rg3 at a yield of 83.6 mg/L in a shake flask (7.0 mg/g dry weight, 21.12-fold higher than with wild-type cultures). The high-production system established in this study could be a potential platform to produce the ginsenoside Rg3 commercially for pharmaceutical use.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Lignina/metabolismo , Panax/química , Panax/genética , Panax/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo
5.
Sci Rep ; 10(1): 16309, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005000

RESUMO

Chloroplast genomes have been widely considered an informative and valuable resource for molecular marker development and phylogenetic reconstruction in plant species. This study evaluated the complete chloroplast genomes of the traditional Chinese medicine Gleditsia sinensis and G. japonica, an adulterant of the former. The complete chloroplast genomes of G. sinensis and G. japonica were found to be of sizes 163,175 bp and 162,391 bp, respectively. A total of 111 genes were identified in each chloroplast genome, including 77 coding sequences, 30 tRNA, and 4 rRNA genes. Comparative analysis demonstrated that the chloroplast genomes of these two species were highly conserved in genome size, GC contents, and gene organization. Additionally, nucleotide diversity analysis of the two chloroplast genomes revealed that the two short regions of ycf1b were highly diverse, and could be treated as mini-barcode candidate regions. The mini-barcode of primers ZJ818F-1038R was proven to precisely discriminate between these two species and reflect their biomass ratio accurately. Overall, the findings of our study will shed light on the genetic evolution and guide species identification of G. sinensis and G. japonica.


Assuntos
Cloroplastos/genética , Código de Barras de DNA Taxonômico , Genoma de Cloroplastos/genética , Gleditsia/genética , Mapeamento Cromossômico , Código de Barras de DNA Taxonômico/métodos , Genes de Plantas/genética , Genoma de Planta/genética , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
6.
ACS Infect Dis ; 6(9): 2524-2531, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786284

RESUMO

The discovery of novel drug candidates with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) potential is critical for the control of the global COVID-19 pandemic. Artemisinin, an old antimalarial drug derived from Chinese herbs, has saved millions of lives. Artemisinins are a cluster of artemisinin-related drugs developed for the treatment of malaria and have been reported to have multiple pharmacological activities, including anticancer, antiviral, and immune modulation. Considering the reported broad-spectrum antiviral potential of artemisinins, researchers are interested in whether they could be used to combat COVID-19. We systematically evaluated the anti-SARS-CoV-2 activities of nine artemisinin-related compounds in vitro and carried out a time-of-drug-addition assay to explore their antiviral mode of action. Finally, a pharmacokinetic prediction model was established to predict the therapeutic potential of selected compounds against COVID-19. Arteannuin B showed the highest anti-SARS-CoV-2 potential with an EC50 of 10.28 ± 1.12 µM. Artesunate and dihydroartemisinin showed similar EC50 values of 12.98 ± 5.30 µM and 13.31 ± 1.24 µM, respectively, which could be clinically achieved in plasma after intravenous administration. Interestingly, although an EC50 of 23.17 ± 3.22 µM was not prominent among the tested compounds, lumefantrine showed therapeutic promise due to high plasma and lung drug concentrations after multiple dosing. Further mode of action analysis revealed that arteannuin B and lumefantrine acted at the post-entry step of SARS-CoV-2 infection. This research highlights the anti-SARS-CoV-2 potential of artemisinins and provides leading candidates for anti-SARS-CoV-2 drug research and development.


Assuntos
Antivirais/farmacologia , Artemisininas/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Animais , Antimaláricos/farmacologia , COVID-19 , Chlorocebus aethiops , Descoberta de Drogas , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Pandemias , SARS-CoV-2 , Células Vero
7.
Plants (Basel) ; 8(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31614980

RESUMO

Ampelopsis humulifolia (A. humulifolia) and Ampelopsis japonica (A. japonica), which belong to the family Vitaceae, are valuably used as medicinal plants. The chloroplast (cp) genomes have been recognized as a convincing data for marker selection and phylogenetic studies. Therefore, in this study we reported the complete cp genome sequences of two Ampelopsis species. Results showed that the cp genomes of A. humulifolia and A. japonica were 161,724 and 161,430 bp in length, respectively, with 37.3% guanine-cytosine (GC) content. A total of 114 unique genes were identified in each cp genome, comprising 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. We determined 95 and 99 small sequence repeats (SSRs) in A. humulifolia and A. japonica, respectively. The location and distribution of long repeats in the two cp genomes were identified. A highly divergent region of psbZ (Photosystem II reaction center protein Z) -trnG (tRNA-Glycine) was found and could be treated as a potential marker for Vitaceae, and then the corresponding primers were designed. Additionally, phylogenetic analysis showed that Vitis was closer to Tetrastigma than Ampelopsis. In general, this study provides valuable genetic resources for DNA barcoding marker identification and phylogenetic analyses of Ampelopsis.

8.
Mitochondrial DNA B Resour ; 4(2): 2800-2801, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-33365734

RESUMO

Rumex crispus has high medicinal value which belongs to the family Polygonaceae. We sequenced the complete chloroplast genome of R. crispus, which is 158,851 bp in length. A total of 111 unique genes have been predicted in the chloroplast genome of this species, consisting of 77 protein-coding sequences, 30 tRNA and 4 rRNA genes. A maximum likelihood (ML) phylogenetic tree based on 80 protein-coding genes of 18 Polygonaceae species showed the phylogenetic position of R. crispus within the family Polygonaceae. These results facilitate population and biological studies of R. crispus and benefit further investigations of this important species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA