Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Theranostics ; 13(11): 3872-3896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441603

RESUMO

Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Ascórbico/farmacologia , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Células Cultivadas , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
2.
J Pept Sci ; 29(1): e3447, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35940823

RESUMO

Dandelion (Taraxacum officinale) is widely consumed as a health food and a traditional medicine. However, the protective effect of dandelion bio-active peptides (DPs) against polycyclic aromatic hydrocarbon-induced blood vessel inflammation and oxidative damage is not well documented. In the current study, four novel DPs were isolated using an activity tracking method. The protective activity of the DPs against benzo(a)pyrene (Bap)-induced human umbilical vein endothelial cell (HUVEC) damage was explored. The results indicated that DP-2 [cycle-(Thr-His-Ala-Trp)] effectively inhibited Bap-induced reactive oxygen species (ROS) and malondialdehyde (MDA) overproduction and reinforced antioxidant enzyme activity while inhibiting the production of inflammatory factors in HUVECs. Moreover, DP-2 increased NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1, and nuclear factor E2-releated factor 2 expression levels by activating the PI3K/Akt signaling pathway. In addition, DP-2 attenuated Bap-induced HUVEC apoptosis via the Bcl-2/Bax/cytochrome c apoptotic pathway. These results suggest that DP-2 is a promising compound for protecting HUVECs from Bap-induced inflammatory and oxidative damage.


Assuntos
Taraxacum , Humanos , Células Endoteliais da Veia Umbilical Humana , Benzo(a)pireno/toxicidade , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Peptídeos
3.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234687

RESUMO

The aging process impacts neural stem cells and causes a significant decline in neurogenesis that contributes to neuronal dysfunction leading to cognitive decline. Blueberries are rich in polyphenols and have been shown to improve cognition and memory in older humans. While our previous studies have shown that blueberry supplementations can increase neurogenesis in aged rodents, it is not clear whether this finding can be extrapolated to humans. We thus investigated the effects of blueberry treatments on adult hippocampal human neural progenitor cells (AHNPs) that are involved in neurogenesis and potentially in memory and other brain functions. Cultured AHNPs were treated with blueberry extract at different concentrations. Their viability, proliferation, and differentiation were evaluated with and without the presence of a cellular oxidative stressor, dopamine, and potential cellular mechanisms were also investigated. Our data showed that blueberry extract can significantly increase the viability and proliferation rates of control hippocampal AHNPs and can also reverse decreases in viability and proliferation induced by the cellular stressor dopamine. These effects may be associated with blueberry's anti-inflammatory, antioxidant, and calcium-buffering properties. Polyphenol-rich berry extracts thus confer a neuroprotective effect on human hippocampal progenitor cells in vitro.


Assuntos
Mirtilos Azuis (Planta) , Células-Tronco Neurais , Fármacos Neuroprotetores , Adulto , Idoso , Anti-Inflamatórios , Antioxidantes/farmacologia , Cálcio , Dopamina , Humanos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
4.
Biomed Res Int ; 2019: 8740674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380440

RESUMO

Music exposure is known to play a positive role in learning and memory and can be a complementary treatment for anxiety and fear. However, whether juvenile music exposure affects adult behavior is not known. Two-week-old Sprague-Dawley rats were exposed to music for 2 hours daily or to background noise (controls) for a period of 3 weeks. At 60 days of age, rats were subjected to auditory fear conditioning, fear extinction training, and anxiety-like behavior assessments or to anterior cingulate cortex (ACC) brain-derived neurotrophic factor (BDNF) assays. We found that the music-exposed rats showed significantly less freezing behaviors during fear extinction training and spent more time in the open arm of the elevated plus maze after fear conditioning when compared with the control rats. Moreover, the BDNF levels in the ACC in the music group were significantly higher than those of the controls with the fear conditioning session. This result suggests that music exposure in juvenile rats decreases anxiety-like behaviors, facilitates fear extinction, and increases BDNF levels in the ACC in adulthood after a stressful event.


Assuntos
Ansiedade/terapia , Musicoterapia , Música , Transtornos Fóbicos/terapia , Animais , Ansiedade/fisiopatologia , Modelos Animais de Doenças , Medo/fisiologia , Humanos , Memória/fisiologia , Transtornos Fóbicos/fisiopatologia , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 10(8): e0135000, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26262993

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo. METHODS AND RESULTS: Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05). CONCLUSION: Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.


Assuntos
Metabolismo Energético , Espectroscopia de Ressonância Magnética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/metabolismo , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Miocárdio/patologia
6.
Circ Res ; 111(4): 455-68, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22723295

RESUMO

RATIONALE: The mechanism by which endogenous progenitor cells contribute to functional and beneficial effects in stem cell therapy remains unknown. OBJECTIVE: Utilizing a novel (31)P magnetic resonance spectroscopy-2-dimensional chemical shift imaging method, this study examined the heterogeneity and bioenergetic consequences of postinfarction left ventricular (LV) remodeling and the mechanisms of endogenous progenitor cell contribution to the cellular therapy. METHODS AND RESULTS: Human embryonic stem cell-derived vascular cells (hESC-VCs) that stably express green fluorescent protein and firefly luciferase (GFP(+)/Luc(+)) were used for the transplantation. hESC-VCs may release various cytokines to promote angiogenesis, prosurvival, and antiapoptotic effects. Both in vitro and in vivo experiments demonstrated that hESC-VCs effectively inhibit myocyte apoptosis. In the mouse model, a fibrin patch-based cell delivery resulted in a significantly better cell engraftment rate that was accompanied by a better ejection fraction. In the swine model of ischemia-reperfusion, the patch-enhanced delivery of hESC-VCs resulted in alleviation of abnormalities including border zone myocardial perfusion, contractile dysfunction, and LV wall stress. These results were also accompanied by a pronounced recruitment of endogenous c-kit(+) cells to the injury site. These improvements were directly associated with a remarkable improvement in myocardial energetics, as measured by a novel in vivo (31)P magnetic resonance spectroscopy-2-dimensional chemical shift imaging technology. CONCLUSIONS: The findings of this study demonstrate that a severely abnormal heterogeneity of myocardial bioenergetics in hearts with postinfarction LV remodeling can be alleviated by the hESC-VCs therapy. These findings suggest an important therapeutic target of peri-scar border zone and a promising therapeutic potential for using hESC-VCs together with the fibrin patch-based delivery system.


Assuntos
Células-Tronco Embrionárias/transplante , Células Endoteliais/transplante , Metabolismo Energético , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Miócitos de Músculo Liso/transplante , Transplante de Células-Tronco , Remodelação Ventricular , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Linhagem Celular , Movimento Celular , Rastreamento de Células , Circulação Coronária , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Feminino , Fibrina , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Contração Miocárdica , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos de Músculo Liso/metabolismo , Fosfocreatina/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Recuperação de Função Fisiológica , Transplante de Células-Tronco/métodos , Volume Sistólico , Suínos , Fatores de Tempo , Alicerces Teciduais , Transfecção , Função Ventricular Esquerda
7.
Am J Physiol Heart Circ Physiol ; 298(5): H1348-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20173039

RESUMO

The study examined the long-term outcome of cardiac stem cell transplantation in hearts with postinfarction left ventricular (LV) remodeling. Myocardial infarction (MI) was created by ligating the first and second diagonal branches of the left anterior descending coronary artery in miniature swine. Intramyocardial injections of 50 million LacZ-labeled bone marrow-derived multipotent progenitor cells (MPC) were performed in the periscar region (Cell, n = 7) immediately after MI, whereas, in control animals (Cont, n = 7), saline was injected. Functional outcome was assessed monthly for 4 mo with MRI and (31)P-magnetic resonance spectroscopy. Engraftment was studied on histology, and gene chip (Affymetrix) array analysis was used to study differential expression of genes in the two groups. MPC treatment resulted in improvement of ejection fraction as early as 10 days after MI (Cell, 43.4 +/- 5.1% vs. Cont, 32.2 +/- 5.5%; P < 0.05). This improvement was seen each month and persisted to 4 mo (Cell, 51.2 +/- 4.8% vs. Cont, 35.7 +/- 5.0%; P < 0.05). PCr-to-ATP ratio (PCr/ATP) improved with MPC transplantation, which was most pronounced at high cardiac work states (subendocardial PCr/ATP was 1.70 +/- 0.10 vs. 1.34 +/- 0.14, P < 0.05). There was no significant difference in scar size (scar/LV area * 100) at 10 days postinfarction. However, at 4 mo, there was a significant decrease in scar size in the Cell group (Cell, 4.6 +/- 1.0% vs. Cont, 8.6 +/- 2.4%; P < 0.05). No significant engraftment of MPC was observed. MPC transplantation was associated with a downregulation of mitochondrial oxidative enzymes and increased levels of myocyte enhancer factor 2a and zinc finger protein 91. In conclusion, MPC transplantation leads to long-term functional and bioenergetic improvement in a porcine model of postinfarction LV remodeling, despite no significant engraftment of stem cells in the heart. MPC transplantation reduces regional wall stresses and infarct size and mitigates the adverse effects of LV remodeling, as seen by a reduction in LV hypertrophy and LV dilatation, and is associated with differential expression of genes relating to metabolism and apoptosis.


Assuntos
Transplante de Medula Óssea/fisiologia , Expressão Gênica/fisiologia , Células-Tronco Multipotentes/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Trifosfato de Adenosina/metabolismo , Animais , Biotina/farmacologia , DNA Complementar/biossíntese , DNA Complementar/genética , Metabolismo Energético/fisiologia , Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fosfocreatina/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , Volume Sistólico/fisiologia , Suínos , Resultado do Tratamento , Remodelação Ventricular/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 294(5): H2313-21, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18326803

RESUMO

This study utilized porcine models of postinfarction left ventricular (LV) remodeling [myocardial infarction (MI); n = 8] and concentric LV hypertrophy secondary to aortic banding (AoB; n = 8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics ((31)P-magnetic resonance spectroscopy). Physiological assessments were conducted at a 4-wk time point after MI or AoB surgery. Comparisons were made with size-matched normal animals (normal; n = 8). Both MI and AoB instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (P < 0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from that in normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of PCr/ATP decreased from 1.98 +/- 0.16 (normal) to 1.06 +/- 0.30 (MI; P < 0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, P < 0.01 vs. normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone.


Assuntos
Metabolismo Energético , Hipertrofia Ventricular Esquerda/fisiopatologia , Contração Miocárdica , Infarto do Miocárdio/complicações , Miocárdio/metabolismo , Remodelação Ventricular , Trifosfato de Adenosina/metabolismo , Animais , Aorta/cirurgia , Vasos Coronários/cirurgia , Modelos Animais de Doenças , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Ligadura , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fosfocreatina/metabolismo , Projetos de Pesquisa , Estresse Mecânico , Volume Sistólico , Suínos , Pressão Ventricular
9.
Am J Physiol Heart Circ Physiol ; 293(3): H1772-80, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17573463

RESUMO

Preclinical and clinical studies have demonstrated that stem cell transplantation can improve the left ventricular (LV) contractile performance, yet the underlying mechanisms remain unknown. We examined whether mesenchymal stem cell (MSC) transplantation-induced beneficial effects are secondary to paracrine-associated improvements in LV contractile performance, wall stress, and myocardial bioenergetics in hearts with postinfarction LV remodeling. Myocardial contractile function and bioenergetics were compared 4 wk after acute myocardial infarction in normal pigs (n = 6), untreated pigs with myocardial infarction (MI group; n = 6), and pigs receiving autologous MSC transplantation (MI + MSC group; n = 5). A distal occlusion of the left anterior descending coronary artery instigated significant myocardial hypertrophy. Ejection fraction decreased from 55.3 +/- 3.1% (normal) to 30.4 +/- 2.3% (MI group; P < 0.01) and to 45.4 +/- 3.1% (MI + MSC group; P < 0.01 vs. MI). Hearts in the MI group developed severe contractile dyskinesis in the infarct zone and border zone (BZ). MSC transplantation significantly improved contractile performance from dyskinesis to active contraction (P < 0.01 vs. MI). BZ systolic wall stress was severely increased in MI hearts but significantly improved after MSC transplantation (P < 0.01 vs. MI). The BZ demonstrated profound bioenergetic abnormalities in MI pigs; this was significantly improved after MSC transplantation (P < 0.01 vs. MI). Patchy spared myocytes were found in the infarct zone of hearts receiving MSC transplantation but not in control hearts. These data demonstrate that MSC transplantation into the BZ causes significant improvements in myocardial contractile performance and reduction in wall stress, which ultimately results in significant bioenergetic improvements. Low cell engraftment indicates that MSCs did not provide a structural contribution to the damaged heart and that the observed beneficial effects likely resulted from paracrine repair mechanisms.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Contração Miocárdica/fisiologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Neovascularização Fisiológica/fisiologia , Volume Sistólico/fisiologia , Suínos , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular
10.
Circulation ; 115(14): 1866-75, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17389266

RESUMO

BACKGROUND: The present study examined whether transplantation of adherent bone marrow-derived stem cells, termed pMultistem, induces neovascularization and cardiomyocyte regeneration that stabilizes bioenergetic and contractile function in the infarct zone and border zone (BZ) after coronary artery occlusion. METHODS AND RESULTS: Permanent left anterior descending artery occlusion in swine caused left ventricular remodeling with a decrease of ejection fraction from 55+/-5.6% to 30+/-5.4% (magnetic resonance imaging). Four weeks after left anterior descending artery occlusion, BZ myocardium demonstrated profound bioenergetic abnormalities, with a marked decrease in subendocardial phosphocreatine/ATP (31P magnetic resonance spectroscopy; 1.06+/-0.30 in infarcted hearts [n=9] versus 1.90+/-0.15 in normal hearts [n=8; P<0.01]). This abnormality was significantly improved by transplantation of allogeneic pMultistem cells (subendocardial phosphocreatine/ATP to 1.34+/-0.29; n=7; P<0.05). The BZ protein expression of creatine kinase-mt and creatine kinase-m isoforms was significantly reduced in infarcted hearts but recovered significantly in response to cell transplantation. MRI demonstrated that the infarct zone systolic thickening fraction improved significantly from systolic "bulging" in untreated animals with myocardial infarction to active thickening (19.7+/-9.8%, P<0.01), whereas the left ventricular ejection fraction improved to 42.0+/-6.5% (P<0.05 versus myocardial infarction). Only 0.35+/-0.05% donor cells could be detected 4 weeks after left anterior descending artery ligation, independent of cell transplantation with or without immunosuppression with cyclosporine A (with cyclosporine A, n=6; no cyclosporine A, n=7). The fraction of grafted cells that acquired an endothelial or cardiomyocyte phenotype was 3% and approximately 2%, respectively. Patchy spared myocytes in the infarct zone were found only in pMultistem transplanted hearts. Vascular density was significantly higher in both BZ and infarct zone of cell-treated hearts than in untreated myocardial infarction hearts (P<0.05). CONCLUSIONS: Thus, allogeneic pMultistem improved BZ energetics, regional contractile performance, and global left ventricular ejection fraction. These improvements may have resulted from paracrine effects that include increased vascular density in the BZ and spared myocytes in the infarct zone.


Assuntos
Células-Tronco Multipotentes/transplante , Infarto do Miocárdio/cirurgia , Remodelação Ventricular , Trifosfato de Adenosina/análise , Animais , Diferenciação Celular , Linhagem da Célula , Ciclosporina/uso terapêutico , Metabolismo Energético , Feminino , Imunossupressores/uso terapêutico , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Masculino , Modelos Animais , Contração Miocárdica , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/química , Miócitos Cardíacos/citologia , Neovascularização Fisiológica , Fosfocreatina/análise , Distribuição Aleatória , Regeneração , Sus scrofa , Suínos
11.
J Cardiovasc Pharmacol ; 47(5): 686-94, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16775509

RESUMO

The structural left ventricular (LV) remodeling and contractile dysfunction of hearts with postinfarction LV remodeling are benefited by angiotensin II type 1 receptor (AT1) blocker. However, the myocardial bioenergetic consequences of AT1 blocker in these hearts are not known. To investigate, we used a porcine model of postinfarction LV remodeling produced by ligation of the left circumflex coronary artery. After infarction, 7 pigs received olmesartan medoxomil (2 mg/kg) for comparison against 9 untreated and 10 normal pigs. Measurements of hemodynamics, myocardial perfusion, and myocardial bioenergetics were taken 7 weeks postinfarction. The treated group had an LV-to-body weight ratio significantly lower than the untreated group (2.69 +/- 0.70, 2.96 +/- 0.51, 3.66 +/- 0.60 g/kg for control, treated, and untreated groups, respectively). The untreated group had a mean aortic pressure significantly higher than the control (73 +/- 16, 86 +/- 14, and 94 +/- 20 mm Hg, respectively). The subendocardial phosphocreatine-to-ATP ratios of the treated group were significantly higher than that of the untreated group. The untreated group, but not the treated group, had significant reductions in mitochondrial F0F1-ATPase subunits compared with controls. Congestive heart failure as evidenced by significant ascites (100 to 2000 mL) developed in 4 of the 9 untreated animals, but was absent in the treated group. Animals with heart failure demonstrated reductions in both mitochondrial F0F1-ATPase expression and myocardial high-energy phosphate levels. Thus, severe LV dysfunction and accompanying abnormal myocardial bioenergetic phenotype were prevented by the AT1 antagonist olmesartan medoxomil.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Insuficiência Cardíaca/prevenção & controle , Imidazóis/farmacologia , Infarto do Miocárdio/fisiopatologia , Tetrazóis/farmacologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Vasos Coronários , Metabolismo Energético , Coração/efeitos dos fármacos , Coração/fisiopatologia , Espectroscopia de Ressonância Magnética , Mitocôndrias/enzimologia , Infarto do Miocárdio/metabolismo , Olmesartana Medoxomila , Consumo de Oxigênio , Fosfatos/metabolismo , ATPases Translocadoras de Prótons/análise , Sistema Renina-Angiotensina/efeitos dos fármacos , Suínos
12.
Am J Physiol Heart Circ Physiol ; 290(4): H1393-405, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16387794

RESUMO

In an established swine model of severe left ventricular (LV) hypertrophy (LVH), the bioenergetic and functional consequences of transplanting autologous mesenchymal stem cells (MSCs) overexpressing vascular endothelial growth factor (VEGF-MSCs) into the LV were evaluated; transplantation was accomplished by infusion of VEGF-MSCs into the interventricular cardiac vein. Specifically, the hypertrophic response to aortic banding was compared in seven pigs treated with 30 million VEGF-MSCs, eight pigs treated with 30 million MSCs without VEGF modification, and 19 untreated LVH pigs. Eight pigs without banding or cell transplantation (normal) were also studied. Four weeks postbanding, LV wall thickening (MRI), myocardial blood flow (MBF), high-energy phosphate levels ((31)P magnetic resonance spectroscopy), and hemodynamic measurements were obtained under basal conditions and during a catecholamine-induced high cardiac workstate (HCW). Although 9 of 19 untreated banded pigs developed clinical evidence of biventricular failure, no MSCs-treated animal developed heart failure. MSCs engraftment was present in both cell transplant groups, and both baseline and HCW MBF values were significantly increased in hearts receiving VEGF-MSCs compared with other groups (P < 0.05). During HCW, cardiac inotropic reserve (defined as the percent increase of rate pressure product at HCW relative to baseline) was normal in the VEGF-MSCs group and significantly decreased in all other banded groups. Additionally, during HCW, the myocardial energetic state [reflected by the phosphocreatine-to-ATP ratio (PCr/ATP)] of VEGF-MSCs-treated hearts remained stable, whereas in all other groups, PCr/ATP decreased significantly from baseline values (P < 0.05, each group). Myocardial von Willebrand factor and VEGF mRNA expressions and myocardial capillary density were significantly increased in VEGF-MSCs-treated hearts (P < 0.05). Hence, in the pressure-overloaded LV, transplantation of VEGF-MSCs prevents LV decompensation, induces neovascularization, attenuates hypertrophy, and improves MBF, myocardial bioenergetic characteristics, and contractile performance.


Assuntos
Metabolismo Energético , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/fisiopatologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Células Cultivadas , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/cirurgia , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA