Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Theor Appl Genet ; 137(1): 23, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231256

RESUMO

KEY MESSAGE: Integrated QTL mapping and WGCNA condense the potential gene regulatory network involved in oil accumulation. A glycosyl hydrolases gene (GhHSD1) for oil biosynthesis was confirmed in Arabidopsis, which will provide useful knowledge to understand the functional mechanism of oil biosynthesis in cotton. Cotton is an economical source of edible oil for the food industry. The genetic mechanism that regulates oil biosynthesis in cottonseeds is essential for the genetic enhancement of oil content (OC). To explore the functional genomics of OC, this study utilized an interspecific backcross inbred line population to dissect the quantitative trait locus (QTL) interlinked with OC. In total, nine OC QTLs were identified, four of which were novel, and each QTL explained 3.62-34.73% of the phenotypic variation of OC. The comprehensive transcript profiling of developing cottonseeds revealed 3,646 core genes differentially expressed in both inbred parents. Functional enrichment analysis determined 43 genes were annotated with oil biosynthesis processes. Implementation of weighted gene co-expression network analysis showed that 803 differential genes had a significant correlation with the OC phenotype. Further integrated analysis identified seven important genes located in OC QTLs. Of which, the GhHSD1 gene located in stable QTL qOC-Dt3-1 exhibited the highest functional linkages with the other network genes. Phylogenetic analysis showed significant evolutionary differences in the HSD1 sequences between oilseed- and starch- crops. Furthermore, the overexpression of GhHSD1 in Arabidopsis yielded almost 6.78% higher seed oil. This study not only uncovers important genetic loci for oil accumulation in cottonseed, but also provides a set of new candidate genes that potentially influence the oil biosynthesis pathway in cottonseed.


Assuntos
Arabidopsis , Gossypium , Gossypium/genética , Óleo de Sementes de Algodão , Filogenia , Genômica
2.
Physiol Plant ; 174(3): e13701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526222

RESUMO

Cotton is not only the most important fiber crop but also the fifth most important oilseed crop in the world because of its oil-rich seeds as a byproduct of fiber production. By comparative transcriptome analysis between two germplasms with diverse oil accumulation, we reveal pieces of the gene expression network involved in the process of oil synthesis in cottonseeds. Approximately, 197.16 Gb of raw data from 30 RNA sequencing samples with 3 biological replicates were generated. Comparison of the high-oil and low-oil transcriptomes enabled the identification of 7682 differentially expressed genes (DEGs). Based on gene expression profiles relevant to triacylglycerol (TAG) biosynthesis, we proposed that the Kennedy pathway (diacylglycerol acyltransferase-catalyzed diacylglycerol to TAG) is the main pathway for oil production, rather than the phospholipid diacylglycerol acyltransferase-mediated pathway. Using weighted gene co-expression network analysis, 5312 DEGs were obtained and classified into 14 co-expression modules, including the MEblack module containing 10 genes involved in lipid metabolism. Among the DEGs in the MEblack module, GhCYSD1 was identified as a potential key player in oil biosynthesis. The overexpression of GhCYSD1 in yeast resulted in increased oil content and altered fatty acid composition. This study may not only shed more light on the underlying molecular mechanism of oil accumulation in cottonseed oil, but also provide a set of new gene for potential enhancement of oil content in cottonseeds.


Assuntos
Óleo de Sementes de Algodão , Óleos de Plantas , Óleo de Sementes de Algodão/análise , Óleo de Sementes de Algodão/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sementes/metabolismo , Transcriptoma/genética
3.
Int J Mol Sci ; 21(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013234

RESUMO

Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.


Assuntos
Genoma de Planta , Gossypium/genética , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Cromossomos de Plantas , Ácidos Graxos/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/química , Gossypium/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Filogenia , Óleos de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/metabolismo , Locos de Características Quantitativas , Elementos Reguladores de Transcrição/genética , Sais/farmacologia , Sementes/química , Sementes/metabolismo , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
4.
Plant Sci ; 286: 89-97, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300146

RESUMO

Cottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array. Of these, the OC QTL qOC-Dt5-1 delineated by nine SNPs occurred in a confidence interval of 4 SSRs with previously reported OC QTLs. A combined transcriptome and qRT-PCR analysis revealed that a peroxidase gene (GhPRXR1) was predominantly expressed during the middle-late stage (20-35 days post anthesis) of ovule development. The overexpression of GhPRXR1 in yeast significantly increased the OC by 20.01-37.25 %. Suppression of GhPRXR1 gene expression in the virus-induced gene-silenced cotton reduced the OC by 18.11%. Our results contribute to identifying more OC QTLs and verifying a candidate gene that influences cottonseed oil biosynthesis.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium/genética , Fosfoenolpiruvato Carboxilase/genética , Óleos de Plantas/química , Proteínas de Plantas/genética , China , Gossypium/química , Gossypium/enzimologia , Gossypium/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
5.
BMC Genomics ; 20(1): 402, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117950

RESUMO

BACKGROUND: Cotton (Gossypium spp.) is the most important natural fiber crop worldwide, and cottonseed oil is its most important byproduct. Phospholipid: diacylglycerol acyltransferase (PDAT) is important in TAG biosynthesis, as it catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3 position of sn-1, 2-diacylglyerol to form triacylglycerol (TAG) and a lysophospholipid. However, little is known about the genes encoding PDATs involved in cottonseed oil biosynthesis. RESULTS: A comprehensive genome-wide analysis of G. hirsutum, G. barbadense, G. arboreum, and G. raimondii herein identified 12, 11, 6 and 6 PDATs, respectively. These genes were divided into 3 subfamilies, and a PDAT-like subfamily was identified in comparison with dicotyledonous Arabidopsis. All GhPDATs contained one or two LCAT domains at the C-terminus, while most GhPDATs contained a preserved single transmembrane region at the N-terminus. A chromosomal distribution analysis showed that the 12 GhPDAT genes in G. hirsutum were distributed in 10 chromosomes. However, none of the GhPDATs was co-localized with quantitative trait loci (QTL) for cottonseed oil content, suggesting that their sequence variations are not genetically associated with the natural variation in cottonseed oil content. Most GhPDATs were expressed during the cottonseed oil accumulation stage. Ectopic expression of GhPDAT1d increased Arabidopsis seed oil content. CONCLUSIONS: Our comprehensive genome-wide analysis of the cotton PDAT gene family provides a foundation for further studies into the use of PDAT genes to increase cottonseed oil content through biotechnology.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Fosfolipídeos/análise , Óleos de Plantas/análise , Proteínas de Plantas/genética , Diacilglicerol O-Aciltransferase/metabolismo , Evolução Molecular , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sementes/química
6.
Plant Mol Biol ; 97(6): 537-551, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30066309

RESUMO

Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.


Assuntos
Gossypium/genética , Perfilação da Expressão Gênica/métodos , Gossypium/citologia , Gossypium/metabolismo , Infertilidade/genética , Microscopia Eletrônica de Transmissão , Oxirredução , Pólen/genética , Pólen/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
BMC Genomics ; 18(1): 218, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28249560

RESUMO

BACKGROUND: Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton. RESULTS: In this study, a comprehensive genome-wide analysis in four Gossypium species with genome sequences, i.e., tetraploid G. hirsutum- AD1 and G. barbadense- AD2 and its possible ancestral diploids G. raimondii- D5 and G. arboreum- A2, identified 13, 10, 8, and 9 LPAAT genes, respectively, that were divided into four subfamilies. RNA-seq analyses of the LPAAT genes in the widely grown G. hirsutum suggest their differential expression at the transcriptional level in developing cottonseeds and fibers. Although 10 LPAAT genes were co-localised with quantitative trait loci (QTL) for cottonseed oil or protein content within a 25-cM region, only one single strand conformation polymorphic (SSCP) marker developed from a synonymous single nucleotide polymorphism (SNP) of the At-Gh13LPAAT5 gene was significantly correlated with cottonseed oil and protein contents in one of the three field tests. Moreover, transformed yeasts using the At-Gh13LPAAT5 gene with the two sequences for the SNP led to similar results, i.e., a 25-31% increase in palmitic acid and oleic acid, and a 16-29% increase in total triacylglycerol (TAG). CONCLUSIONS: The results in this study demonstrated that the natural variation in the LPAAT genes to improving cottonseed oil content and fiber quality is limited; therefore, traditional cross breeding should not expect much progress in improving cottonseed oil content or fiber quality through a marker-assisted selection for the LPAAT genes. However, enhancing the expression of one of the LPAAT genes such as At-Gh13LPAAT5 can significantly increase the production of total TAG and other fatty acids, providing an incentive for further studies into the use of LPAAT genes to increase cottonseed oil content through biotechnology.


Assuntos
Aciltransferases/genética , Genoma de Planta , Gossypium/enzimologia , Aciltransferases/classificação , Aciltransferases/metabolismo , Mapeamento Cromossômico , Fibra de Algodão , Diploide , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Filogenia , Óleos de Plantas/análise , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Sementes/química , Sementes/enzimologia , Sementes/metabolismo , Tetraploidia , Leveduras/metabolismo
8.
PLoS One ; 11(1): e0143646, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26730964

RESUMO

Upland cotton (Gossypium hirstum L.), which produces more than 95% of the world natural cotton fibers, has a narrow genetic base which hinders progress in cotton breeding. Introducing germplasm from exotic sources especially from another cultivated tetraploid G. barbadense L. can broaden the genetic base of Upland cotton. However, the breeding potential of introgression lines (ILs) in Upland cotton with G. barbadense germplasm integration has not been well addressed. This study involved six ILs developed from an interspecific crossing and backcrossing between Upland cotton and G. barbadense and represented one of the first studies to investigate breeding potentials of a set of ILs using a full diallel analysis. High mid-parent heterosis was detected in several hybrids between ILs and a commercial cultivar, which also out-yielded the high-yielding cultivar parent in F1, F2 and F3 generations. A further analysis indicated that general ability (GCA) variance was predominant for all the traits, while specific combining ability (SCA) variance was either non-existent or much lower than GCA. The estimated GCA effects and predicted additive effects for parents in each trait were positively correlated (at P<0.01). Furthermore, GCA and additive effects for each trait were also positively correlated among generations (at P<0.05), suggesting that F2 and F3 generations can be used as a proxy to F1 in analyzing combining abilities and estimating genetic parameters. In addition, differences between reciprocal crosses in F1 and F2 were not significant for yield, yield components and fiber quality traits. But maternal effects appeared to be present for seed oil and protein contents in F3. This study identified introgression lines as good general combiners for yield and fiber quality improvement and hybrids with high heterotic vigor in yield, and therefore provided useful information for further utilization of introgression lines in cotton breeding.


Assuntos
Cruzamentos Genéticos , Gossypium/genética , Hibridização Genética , Melhoramento Vegetal , Fibra de Algodão , Gossypium/química , Gossypium/classificação , Gossipol/análise , Vigor Híbrido , Óleos de Plantas/análise , Proteínas de Plantas/análise , Sementes/química , Especificidade da Espécie
9.
Plant Cell Rep ; 32(10): 1531-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743655

RESUMO

KEY MESSAGE: A global view of differential expression of genes in CMS-D8 of cotton was presented in this study which will facilitate the understanding of cytoplasmic male sterility in cotton. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants which is incapable of producing functional pollen. However, the male fertility can be restored by one or more nuclear-encoded restorer genes. A genome-wide transcriptome analysis of CMS and restoration in cotton is currently lacking. In this study, Affymetrix GeneChips© Cotton Genome Array containing 24,132 transcripts was used to compare differentially expressed (DE) genes of flower buds at the meiosis stage between CMS and its restorer cotton plants conditioned by the D8 cytoplasm. A total of 458 (1.9 %) of DE genes including 127 up-regulated and 331 down-regulated ones were identified in the CMS-D8 line. Quantitative RT-PCR was used to validate 10 DE genes selected from seven functional categories. The most frequent DE gene group was found to encode putative proteins involved in cell wall expansion, such as pectinesterase, pectate lyase, pectin methylesterase, glyoxal oxidase, polygalacturonase, indole-3-acetic acid-amino synthetase, and xyloglucan endo-transglycosylase. Genes in cytoskeleton category including actin, which plays a key role in cell wall expansion, cell elongation and cell division, were also highly differentially expressed between the fertile and CMS plants. This work represents the first study in utilizing microarray to identify CMS-related genes by comparing overall DE genes between fertile and CMS plants in cotton. The results provide evidence that many CMS-associated genes are mainly involved in cell wall expansion. Further analysis will be required to elucidate the molecular mechanisms of male sterility which will facilitate the development of new hybrid cultivars in cotton.


Assuntos
Gossypium/genética , Infertilidade das Plantas/genética , Transcriptoma , Citoplasma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Pólen/genética , Pólen/fisiologia
10.
Theor Appl Genet ; 126(1): 275-87, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064252

RESUMO

Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65-25.27% of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12%) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.


Assuntos
Fibra de Algodão , Gossypium/genética , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Meio Ambiente , Ligação Genética , Marcadores Genéticos/genética , Variação Genética , Genoma de Planta , Modelos Genéticos , Fenótipo , Pólen , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
11.
Plant Cell Rep ; 27(3): 553-61, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18080126

RESUMO

CMS-D8 and its restorer were developed by introducing the cytoplasm and nuclear gene Rf (2) from the wild diploid Gossypium trilobum (D8) into the cultivated tetraploid Upland cotton (Gossypium hirsutum). No information is available on how the Rf (2) gene interacts with CMS-associated genes and how CMS-D8 cytoplasm affects nuclear gene expression. The objective of this study was to identify differentially expressed genes in anther tissues between the non-restoring fertile maintainer ARK8518 (rf(2) rf(2)) and its isogenic heterozygous D8 restorer line, ARK8518R (Rf(2) rf(2)) with D8 cytoplasm, by mRNA differential display (DD). Out of more than 3,000 DDRT-PCR bands amplified by 31 primer combinations from 12 anchor primers and 8 arbitrary decamer primers, approximately 100 bands were identified as being qualitatively differentially displayed. A total of 38 cDNA fragments including 12 preferentially expressed cDNA bands in anther were isolated, cloned and sequenced. Reverse northern blot analysis showed that only 4 genes, including genes encoding a Cys-3-His zinc finger protein and aminopeptidase, were up-regulated, while 22 genes, including genes for phosphoribosylanthranilate transferase (PAT), starch synthase (SS), 4-coumarate-CoA ligase, electron transporter, calnexin, arginine decarboxylase, and polyubiquitin, were down-regulated in the heterozygous restorer ARK8518R. The down-regulation of SS explains the lack of starch accumulation in sterile rf(2) pollen grains in the heterozygous restored plants. The molecular mechanism of CMS and its restoration, specifically the possible roles of SS and PAT genes in relation to restoration of Rf(2) to CMS-D8, are discussed. This investigation represents the first account of such an analysis in cotton.


Assuntos
Perfilação da Expressão Gênica/métodos , Gossypium/genética , Northern Blotting , DNA Complementar/química , DNA Complementar/genética , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA