Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375246

RESUMO

The core of large-scale drug virtual screening is to select the binders accurately and efficiently with high affinity from large libraries of small molecules in which non-binders are usually dominant. The binding affinity is significantly influenced by the protein pocket, ligand spatial information, and residue types/atom types. Here, we used the pocket residues or ligand atoms as the nodes and constructed edges with the neighboring information to comprehensively represent the protein pocket or ligand information. Moreover, the model with pre-trained molecular vectors performed better than the one-hot representation. The main advantage of DeepBindGCN is that it is independent of docking conformation, and concisely keeps the spatial information and physical-chemical features. Using TIPE3 and PD-L1 dimer as proof-of-concept examples, we proposed a screening pipeline integrating DeepBindGCN and other methods to identify strong-binding-affinity compounds. It is the first time a non-complex-dependent model has achieved a root mean square error (RMSE) value of 1.4190 and Pearson r value of 0.7584 in the PDBbind v.2016 core set, respectively, thereby showing a comparable prediction power with the state-of-the-art affinity prediction models that rely upon the 3D complex. DeepBindGCN provides a powerful tool to predict the protein-ligand interaction and can be used in many important large-scale virtual screening application scenarios.


Assuntos
Redes Neurais de Computação , Proteínas , Ligantes , Proteínas/química , Conformação Proteica , Avaliação Pré-Clínica de Medicamentos , Ligação Proteica
2.
Front Psychol ; 14: 1187175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333595

RESUMO

Objective: The objective of this review was to evaluate the efficacy of mental imagery training (MIT) in promoting bilateral transfer (BT) of motor performance for healthy subjects. Data sources: We searched 6 online-databases (Jul-Dec 2022) using terms: "mental practice," "motor imagery training," "motor imagery practice," "mental training," "movement imagery," "cognitive training," "bilateral transfer," "interlimb transfer," "cross education," "motor learning," "strength," "force" and "motor performance." Study selection and data extraction: We selected randomized-controlled studies that examined the effect of MIT on BT. Two reviewers independently determined if each study met the inclusion criteria for the review. Disagreements were resolved through discussion and, if necessary, by a third reviewer. A total of 9 articles out of 728 initially identified studies were chosen for the meta-analysis. Data synthesis: The meta-analysis included 14 studies for the comparison between MIT and no-exercise control (CTR) and 15 studies for the comparison between MIT and physical training (PT). Results: MIT showed significant benefit in inducing BT compared to CTR (ES = 0.78, 95% CI = 0.57-0.98). The effect of MIT on BT was similar to that of PT (ES = -0.02, 95% CI = -0.15-0.17). Subgroup analyses showed that internal MIT (IMIT) was more effective (ES = 2.17, 95% CI = 1.57-2.76) than external MIT (EMIT) (ES = 0.95, 95% CI = 0.74-1.17), and mixed-task (ES = 1.68, 95% CI = 1.26-2.11) was more effective than mirror-task (ES = 0.46, 95% CI = 0.14-0.78) and normal-task (ES = 0.56, 95% CI = 0.23-0.90). No significant difference was found between transfer from dominant limb (DL) to non-dominant limb (NDL) (ES = 0.67, 95% CI = 0.37-0.97) and NDL to DL (ES = 0.87, 95% CI = 0.59-1.15). Conclusion: This review concludes that MIT can serve as a valuable alternative or supplement to PT in facilitating BT effects. Notably, IMIT is preferable to EMIT, and interventions incorporating tasks that have access to both intrinsic and extrinsic coordinates (mixed-task) are preferred over those that involve only one of the two coordinates (mirror-task or normal-task). These findings have implications for rehabilitation of patients such as stroke survivors.

3.
Ann Biomed Eng ; 50(2): 111-137, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35039976

RESUMO

Organ-on-chip or micro-engineered three-dimensional cellular or tissue models are increasingly implemented in the study of cardiovascular pathophysiology as alternatives to traditional in vitro cell culture. Drug induced cardiotoxicity is a key issue in drug development pipelines, but the current in vitro and in vivo studies suffer from inter-species differences, high costs, and lack of reliability and accuracy in predicting cardiotoxicity. Microfluidic heart-on-chip devices can impose a paradigm shift to the current tools. They can not only recapitulate cardiac tissue level functionality and the communication between cells and extracellular matrices but also allow higher throughput studies conducive to drug screening especially with their added functionalities or sensors that extract disease-specific phenotypic, genotypic, and electrophysiological information in real-time. Such electrical and mechanical components can tailor the electrophysiology and mechanobiology of the experiment to better mimic the in vivo condition as well. Recent advancements and challenges are reviewed in the fabrication, functionalization and sensor assisted mechanical and electrophysiological measurements, numerical and computational modeling of cardiomyocytes' behavior, and the clinical applications in drug screening and disease modeling. This review concludes with the current challenges and perspectives on the future of such organ-on-chip platforms.


Assuntos
Biomimética/métodos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Humanos , Miócitos Cardíacos/efeitos dos fármacos
4.
J Nanobiotechnology ; 19(1): 63, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648501

RESUMO

BACKGROUND: Hyperthermia is one of the promising cancer treatment strategies enabled by local heating with the use of tumor-targeting magnetic nanoparticles (MNP) under a non-invasive magnetic field. However, one of the remaining challenges is how to achieve therapeutic levels of heat (without causing damages to regular tissues) in tumors that cannot be effectively treated with anti-tumor drug delivery. RESULTS: In this work, we report a facile method to fabricate magnetic nanorods for hyperthermia by one-step wet chemistry synthesis using 3-Aminopropyltrimethoxysilane (APTMS) as the shape-controlling agent and ferric and ferrous ions as precursors. By adjusting the concentration of APTMS, hydrothermal reaction time, ratios of ferric to ferrous ions, magnetic nanorods with aspect ratios ranging from 4.4 to 7.6 have been produced. At the clinically recommended field strength of 300 Oe (or less) and the frequency of 184 kHz, the specific absorption rate (SAR) of these nanorods is approximately 50 % higher than that of commercial Bionized NanoFerrite particles. CONCLUSIONS: This increase in SAR, especially at low field strengths, is crucial for treating deep tumors, such as pancreatic and rectal cancers, by avoiding the generation of harmful eddy current heating in normal tissues.


Assuntos
Antineoplásicos/farmacologia , Hipertermia/tratamento farmacológico , Magnetismo , Nanopartículas/uso terapêutico , Nanotubos/química , Compostos Férricos/uso terapêutico , Calefação , Temperatura Alta , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Neoplasias/tratamento farmacológico
5.
Neurosci Lett ; 728: 134979, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32302701

RESUMO

BACKGROUND: Sphingosine kinase (SphK) 1 has been reported as an important signaling node in anti-apoptotic signaling. Heparin is a pleiotropic drug that antagonizes many pathophysiological mechanisms. In this study, we evaluated if heparin prevents early brain injury (EBI) after subarachnoid hemorrhage (SAH) by anti-apoptotic mechanisms including SphK1. METHODS: SAH was induced by endovascular perforation in mice, which were randomly assigned to sham-operated (n = 23), SAH + vehicle (n = 36), SAH + 10U heparin pretreatment (n = 13), SAH + 30U heparin pretreatment (n = 15), SAH + 10U heparin posttreatment (n = 31), and SAH + 30U heparin posttreatment (n = 23). At 24 hours post-SAH, neurological scores, brain water content and Evans blue extravasation were evaluated. Also, the expression of SphK, phosphorylated Akt, and cleaved caspase-3 was determined by Western blotting, and cell death was examined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. RESULTS: Low-dose heparin posttreatment improved neurobehavioral function, brain edema, blood-brain barrier disruption and cell death in the cortex, associated with an increase in SphK1 and phosphorylated Akt, and a decrease in cleaved caspase-3. High-dose heparin had a tendency for increased SAH severity, which obscured the neuroprotective effects by heparin. CONCLUSIONS: Low-dose heparin posttreatment may decrease the development of post-SAH EBI through anti-apoptotic mechanisms including sphingosine-related pathway activation.


Assuntos
Edema Encefálico/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Heparina/farmacologia , Esfingosina/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lesões Encefálicas/fisiopatologia , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
J Neurosci Res ; 98(1): 201-211, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30895638

RESUMO

Approaches that facilitate the recovery from coma would have enormous impacts on patient outcomes and medical economics. Orexin-producing neurons release orexins (also known as hypocretins) energy-dependently to maintain arousal. Hyperbaric oxygen (HBO) could increase ATP levels by preserving mitochondrial function. We investigated, for the first time, the arousal effects of HBO and orexins mechanisms in a rat model of unconsciousness induced by ketamine or ethanol. A total of 120 Sprague-Dawley male rats were used in this study. Unconsciousness was induced either by intraperitoneal injection of ketamine or ethanol. The HBO treatment (100% O2 at 3 ATA) was administered immediately after unconsciousness induction for 1 hr. SB334867, orexin-1 receptor (OX1R) inhibitor, or JNJ10397049, orexin-2 receptor (OX2R) inhibitor was administered 30 min intraperitoneally before unconsciousness induction. Loss of righting reflex test (LORR) and Garcia test were used to evaluate the unconsciousness duration and neurological deficits after recovering from unconsciousness, respectively. Enzyme-linked immunosorbent assay was used to measure brain tissue ATP and orexin A levels. Ketamine or ethanol injection resulted in LORR immediately and neurological deficits 6 hr after unconsciousness induction. HBO treatment significantly reduced the LORR duration, improved Garcia scores and unregulated ATP and orexin A levels in the brain tissue. Administration of OX1R inhibitor or OX2 R inhibitor abolished arousal and neurological benefits of HBO. In conclusion, HBO exerted arousal-promoting effects on unconscious rats induced by ketamine or ethanol. The underlying mechanism was via, at least in part, ATP/orexin A upregulation. HBO may be a practical clinical approach to accelerate unconsciousness recovery in patients.


Assuntos
Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/metabolismo , Inconsciência/metabolismo , Regulação para Cima , Animais , Nível de Alerta/efeitos dos fármacos , Benzoxazóis/farmacologia , Dioxanos/farmacologia , Etanol , Oxigenoterapia Hiperbárica , Ketamina , Masculino , Naftiridinas/farmacologia , Compostos de Fenilureia/farmacologia , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Inconsciência/induzido quimicamente , Ureia/análogos & derivados , Ureia/farmacologia
7.
Medicine (Baltimore) ; 98(34): e16865, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31441861

RESUMO

RATIONALE: In assisted reproductive technology, a persistently thin endometrial lining represents a huge challenge during frozen embryo transfer (FET) cycles. PATIENT CONCERNS: Three patients who had a persistently thin endometrial lining despite the use of several medical agents known to improve endometrial lining thickness. DIAGNOSES: Infertility undergoing FET cycles. INTERVENTIONS: A combination of transdermal and intravaginal ozone therapy along with Pulsed Electro-Magnetic Field (PEMF) therapy. OUTCOMES: Ozone with PEMF, both of which are known to have vasodilatatory, anti-inflammatory, and anti-oxidant actions, were successful in improving the thickness of the endometrial lining in all 3 patients. Two out of 3 patients became pregnant following single embryo transfer. LESSONS: Ozone with PEMF constitute a novel experimental approach for women with persistently thin endometrial lining undergoing FET. This novel approach needs validation by large well-designed studies.


Assuntos
Endométrio/efeitos dos fármacos , Magnetoterapia , Oxidantes Fotoquímicos/administração & dosagem , Ozônio/administração & dosagem , Administração Cutânea , Administração Intravaginal , Adulto , Criopreservação , Transferência Embrionária/métodos , Endométrio/patologia , Feminino , Humanos , Oxidantes Fotoquímicos/farmacologia , Ozônio/farmacologia , Gravidez
8.
Med Gas Res ; 9(2): 74-79, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249255

RESUMO

The high morbidity, high mortality, and significant shortage of effective therapies for subarachnoid hemorrhage (SAH) have created an urgency to discover novel therapies. Human studies in Asia have established the safety of hydrogen gas in the treatment of hepatic, renal, pulmonary, and cardiac diseases. Mechanistically, hydrogen gas has been shown to affect oxidative stress, inflammation, and apoptosis. We hypothesized that hydrogen therapy would improve neurological function and increase survival rate in SAH. High dose hydrogen gas (66% at 3 L/min) was administered for 2 hours at 0.5, 8, and 18 hours after SAH. This treatment increased 72-hour survival rate and provided 24-hour neuroprotection after SAH in rats. To our knowledge, this is the first report demonstrating that high dose hydrogen gas therapy reduces mortality and improves outcome after SAH. Our results correlate well with the proposed mechanisms of hydrogen gas therapy within the literature. We outline four pathways and downstream targets of hydrogen gas potentially responsible for our results. A potentially complex network of pathways responsible for the efficacy of hydrogen gas therapy, along with a limited mechanistic understanding of these pathways, justifies further investigation to provide a basis for clinical trials and the advancement of hydrogen gas therapy in humans. This study was approved by the Institutional Animal Care and Use Committee of Loma Linda University, USA (Approval No. 8160016) in May 2016.


Assuntos
Gases/química , Hidrogênio/química , Hidroterapia/métodos , Hemorragia Subaracnóidea/terapia , Animais , Modelos Animais de Doenças , Membro Anterior/fisiologia , Estimativa de Kaplan-Meier , Masculino , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Hemorragia Subaracnóidea/mortalidade , Hemorragia Subaracnóidea/patologia
9.
Med Gas Res ; 9(2): 101-105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249259

RESUMO

Ozone is emerging as a new adjunct therapeutic agent for female infertility. We here present a review of the literature, to date, pertaining to the effect of ozone therapy on tubal, ovarian, endometrial, and vaginal factors that could potentially affect female fertility. It also presents data pertaining to the relationship of ozone therapy on pelvic adhesion formation. Most data were performed on animals and very few human studies existed in the literature. Results suggested that ozone therapy could have beneficial effect on tubal occlusion, could protect from endometritis and vaginitis, might protect ovaries from ischemia and oocyte loss and finally might lead to less formation of pelvic adhesions. There is a critical need for human studies pertaining to ozone therapy, especially using safe methods of administration, such as transdermally or intravaginally, on female fertility.


Assuntos
Infertilidade Feminina/terapia , Ozônio/uso terapêutico , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Endometrite/terapia , Doenças das Tubas Uterinas/terapia , Feminino , Humanos , Infecções/terapia , Doença Inflamatória Pélvica/terapia
10.
Med Gas Res ; 9(1): 46-51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30950418

RESUMO

Isoflurane is a regularly used anesthetic in translational research. Isoflurane facilitates invasive surgery and a rapid recovery. Specifically, in the pathology of stroke, controversy has surrounded isoflurane's intrinsic neuroprotective abilities, affecting apoptosis, excitotoxicity, and blood brain barrier disruption. Due to the intrinsic neuroprotective nature and lack of standardized guidelines for the use of isoflurane, research has shifted away from this gas in most animal models. Antagonistically, studies have also reported that no neuroprotective effects are observed when a surgery is accompanied with isoflurane exposure under 20 minutes. Isoflurane affects the pathophysiology in stroke patients by altering critical pathways in endothelial, neuronal, and microglial cells. Current studies have elucidated isoflurane neuroprotection to be time dependent and may be minimized in experimental designs if the exposure time is limited to a specific window. Therefore, with detailed and extensive literature on anesthetics, we can hypothesize that isoflurane exposure under the 20-minute benchmark, behavior and molecular pathways can be evaluated at any time-point following ischemic insult without confounding artifacts from isoflurane; however, If the exposure to isoflurane exceeds 20 minutes, the acute neuroprotective effects are evident for 2 weeks in the model, which should be accounted for in molecular and behavioral assessments, with either isoflurane inhibitors or a control group at 2 weeks post middle cerebral artery occlusion. The purpose of this review is to suggest a detailed and standardized outline for interventions and behavioral assessments after the use of isoflurane in experimental designs.


Assuntos
Isoflurano/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Isoflurano/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/patologia , Fatores de Tempo
11.
Med Gas Res ; 8(1): 24-28, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770193

RESUMO

Glioblastoma multiforme (GBM) is the most common type of malignant intracranial tumor in adults. Tumor tissue hypoxia, high mitotic rate, and rapid tumor spread account for its poor prognosis. Hyperbaric oxygen therapy (HBOT) may improve the sensitivity of radio-chemotherapy by increasing oxygen tension within the hypoxic regions of the neoplastic tissue. This review summarizes the research of HBOT applications within the context of experimental and clinical GBM. Limited clinical trials and preclinical studies suggest that radiotherapy immediately after HBOT enhances the effects of radiotherapy in some aspects. HBOT also is able to strengthen the anti-tumor effect of chemotherapy when applied together. Overall, HBOT is well tolerated in the GBM patients and does not significantly increase toxicity. However, HBOT applied by itself as curative strategy against GBM is controversial in preclinical studies and has not been evaluated rigorously in GBM patients. In addition to HBOT favorably managing the therapeutic resistance of GBM, future research needs to focus on the multimodal or cocktail approaches to treatment, as well as molecular strategies targeting GBM stem cells.

12.
J Chem Inf Model ; 57(8): 1793-1806, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28678484

RESUMO

A major shortcoming of empirical scoring functions is that they often fail to predict binding affinity properly. Removing false positives of docking results is one of the most challenging works in structure-based virtual screening. Postdocking filters, making use of all kinds of experimental structure and activity information, may help in solving the issue. We describe a new method based on detailed protein-ligand interaction decomposition and machine learning. Protein-ligand empirical interaction components (PLEIC) are used as descriptors for support vector machine learning to develop a classification model (PLEIC-SVM) to discriminate false positives from true positives. Experimentally derived activity information is used for model training. An extensive benchmark study on 36 diverse data sets from the DUD-E database has been performed to evaluate the performance of the new method. The results show that the new method performs much better than standard empirical scoring functions in structure-based virtual screening. The trained PLEIC-SVM model is able to capture important interaction patterns between ligand and protein residues for one specific target, which is helpful in discarding false positives in postdocking filtering.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas/metabolismo , Sítios de Ligação , Receptores ErbB/química , Receptores ErbB/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química , Máquina de Vetores de Suporte , Interface Usuário-Computador
13.
Sci Rep ; 7(1): 5466, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710425

RESUMO

Inflammatory preconditioning is a mechanism in which exposure to small doses of inflammatory stimuli prepares the body against future massive insult by activating endogenous protective responses. Phospholipase A2/5-lipoxygenase/leukotriene-B4 (PLA2/5-LOX/LTB4) axis is an important inflammatory signaling pathway. Naja sputatrix (Malayan spitting cobra) venom contains 15% secretory PLA2 of its dry weight. We investigated if Naja sputatrix venom preconditioning (VPC) reduces surgical brain injury (SBI)-induced neuroinflammation via activating PLA2/5-LOX/LTB4 cascade using a partial frontal lobe resection SBI rat model. Naja sputatrix venom sublethal dose was injected subcutaneously for 3 consecutive days prior to SBI. We observed that VPC reduced brain edema and improved neurological function 24 h and 72 h after SBI. The expression of pro-inflammatory mediators in peri-resection brain tissue was reduced with VPC. Administration of Manoalide, a PLA2 inhibitor or Zileuton, a 5-LOX inhibitor with VPC reversed the protective effects of VPC against neuroinflammation. The current VPC regime induced local skin inflammatory reaction limited to subcutaneous injection site and elicited no other toxic effects. Our findings suggest that VPC reduces neuroinflammation and improves outcomes after SBI by activating PLA2/5-LOX/LTB4 cascade. VPC may be beneficial to reduce post-operative neuroinflammatory complications after brain surgeries.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Lesões Encefálicas/tratamento farmacológico , Encéfalo/patologia , Venenos Elapídicos/uso terapêutico , Inflamação/tratamento farmacológico , Complicações Intraoperatórias/tratamento farmacológico , Leucotrieno B4/metabolismo , Fosfolipases A2/metabolismo , Animais , Biomarcadores/metabolismo , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Lesões Encefálicas/sangue , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Venenos Elapídicos/farmacologia , Hidroxiureia/administração & dosagem , Hidroxiureia/análogos & derivados , Hidroxiureia/farmacologia , Complicações Intraoperatórias/sangue , Complicações Intraoperatórias/patologia , Complicações Intraoperatórias/fisiopatologia , Contagem de Leucócitos , Inibidores de Lipoxigenase/administração & dosagem , Inibidores de Lipoxigenase/farmacologia , Naja , Inibidores de Fosfolipase A2/administração & dosagem , Inibidores de Fosfolipase A2/farmacologia , Ratos , Transdução de Sinais , Pele/patologia , Tela Subcutânea/patologia , Terpenos/administração & dosagem , Terpenos/farmacologia
14.
Biomed Res Int ; 2017: 8134653, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529954

RESUMO

Accounting for high mortality and morbidity rates, intracerebral hemorrhage (ICH) remains one of the most detrimental stroke subtypes lacking a specific therapy. Neuroinflammation contributes to ICH-induced brain injury and is associated with unfavorable outcomes. This study aimed to evaluate whether α7 nicotinic acetylcholine receptor (α7nAChR) stimulation ameliorates neuroinflammation after ICH. Male CD-1 mice and Sprague-Dawley were subjected to intracerebral injection of autologous blood or bacterial collagenase. ICH animals received either α7nAChR agonist PHA-543613 alone or combined with α7nAChR antagonist methyllycaconitine (MLA) or Janus kinase 2 (JAK2) antagonist AG490. Neurobehavioral deficits were evaluated at 24 hours, 72 hours, and 10 weeks after ICH induction. Perihematomal expressions of JAK2, signal transducer and activator of transcription 3 (STAT3), tumor necrosis factor-α (TNF-α), and myeloperoxidase (MPO) were quantified via Western blot. Histologic volumetric analysis of brain tissues was conducted after 10 weeks following ICH induction. PHA-543613 improved short-term neurobehavioral (sensorimotor) deficits and increased activated perihematomal JAK2 and STAT3 expressions while decreasing TNF-α and MPO expressions after ICH. MLA reversed these treatment effects. PHA-543613 also improved long-term neurobehavioral (sensorimotor, learning, and memory) deficits and ameliorated brain atrophy after ICH. These treatment effects were reduced by AG490. α7nAChR stimulation reduced neuroinflammation via activation of the JAK2-STAT3 pathway, thereby ameliorating the short- and long-term sequelae after ICH.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Inflamação/tratamento farmacológico , Janus Quinase 2/genética , Fator de Transcrição STAT3/genética , Receptor Nicotínico de Acetilcolina alfa7/uso terapêutico , Animais , Transfusão de Sangue Autóloga/métodos , Lesões Encefálicas/etiologia , Lesões Encefálicas/genética , Lesões Encefálicas/fisiopatologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Hemorragia Cerebral/fisiopatologia , Colagenases/administração & dosagem , Modelos Animais de Doenças , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/fisiopatologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Peroxidase/genética , Quinuclidinas/administração & dosagem , Ratos , Fator de Necrose Tumoral alfa/genética , Tirfostinas/administração & dosagem , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/genética
15.
Stroke ; 48(6): 1655-1664, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28495827

RESUMO

BACKGROUND AND PURPOSE: Energy depletion is a critical factor leading to cell death and brain dysfunction after ischemic stroke. In this study, we investigated whether energy depletion is involved in hyperglycemia-induced hemorrhagic transformation after ischemic stroke and determined the pathway underlying the beneficial effects of hyperbaric oxygen (HBO). METHODS: After 2-hour middle cerebral artery occlusion, hyperglycemia was induced by injecting 50% dextrose (6 mL/kg) intraperitoneally at the onset of reperfusion. Immediately after it, rats were exposed to HBO at 2 atmospheres absolutes for 1 hour. ATP synthase inhibitor oligomycin A, nicotinamide phosphoribosyl transferase inhibitor FK866, or silent mating type information regulation 2 homolog 1 siRNA was administrated for interventions. Infarct volume, hemorrhagic volume, and neurobehavioral deficits were recorded; the level of blood glucose, ATP, and nicotinamide adenine dinucleotide and the activity of nicotinamide phosphoribosyl transferase were monitored; the expression of silent mating type information regulation 2 homolog 1, acetylated p53, acetylated nuclear factor-κB, and cleaved caspase 3 were detected by Western blots; and the activity of matrix metalloproteinase-9 was assayed by zymography. RESULTS: Hyperglycemia deteriorated energy metabolism and reduced the level of ATP and nicotinamide adenine dinucleotide and exaggerated hemorrhagic transformation, blood-brain barrier disruption, and neurological deficits after middle cerebral artery occlusion. HBO treatment increased the levels of the ATP and nicotinamide adenine dinucleotide and consequently increased silent mating type information regulation 2 homolog 1, resulting in attenuation of hemorrhagic transformation, brain infarction, as well as improvement of neurological function in hyperglycemic middle cerebral artery occlusion rats. CONCLUSIONS: HBO induced activation of ATP/nicotinamide adenine dinucleotide/silent mating type information regulation 2 homolog 1 pathway and protected blood-brain barrier in hyperglycemic middle cerebral artery occlusion rats. HBO might be promising approach for treatment of acute ischemic stroke patients, especially patients with diabetes mellitus or treated with r-tPA (recombinant tissue-type plasminogen activator).


Assuntos
Trifosfato de Adenosina/metabolismo , Isquemia Encefálica , Hemorragia Cerebral , Oxigenoterapia Hiperbárica/métodos , Hiperglicemia/metabolismo , Infarto da Artéria Cerebral Média , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sirtuína 1/metabolismo , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/terapia , Modelos Animais de Doenças , Hiperglicemia/complicações , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/terapia , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/terapia
16.
Med Gas Res ; 6(2): 102-110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867476

RESUMO

Traumatic brain injury (TBI) is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT) have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies.

17.
J Clin Neurosci ; 34: 264-270, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27742373

RESUMO

Angiographic vasospasm, especially in the early phases (<72h) of subarachnoid hemorrhage (SAH), is one of the major complications after an aneurysm rupture and is often the cause of delayed neurological deterioration. Scutellarin (SCU), a flavonoid extracted from the traditional Chinese herb Erigeron breviscapus, has been widely accepted as an antioxidant, but the effect of SCU on vasospasm after SAH remains elusive. Endovascular perforation was conducted to induce SAH in Sprague-Dawley rats. Then, the underlying mechanism of the anti-vasospasm effect of SCU was investigated using a modified Garcia scale, India ink angiography, cross-sectional area analysis, immunohistochemistry staining and western blot. SCU (50µM, 100mg/kg) alleviated angiographic vasospasm and improved neurological function 48h after SAH and enhanced the expression of endothelial nitric oxide synthase (eNOS) at the intima of cerebral arteries. In addition, SCU upregulated the expression of phosphorylated extracellular-regulated kinase 5 (p-Erk5) and Kruppel-like factor 2 (KLF2) at 48h after SAH. However, the effects of SCU were reversed by the Erk5 inhibitor XMD8-92. Our results indicate that SCU could attenuate vasospasm and neurological deficits via modulating the Erk5-KLF2-eNOS pathway after SAH, which may provide an experimental basis for the clinical use of SCU treatment in SAH patients.


Assuntos
Apigenina/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Erigeron , Glucuronatos/farmacologia , Proteína Quinase 7 Ativada por Mitógeno/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Hemorragia Subaracnóidea/tratamento farmacológico , Vasoespasmo Intracraniano/tratamento farmacológico , Animais , Apigenina/administração & dosagem , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Glucuronatos/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/complicações , Vasoespasmo Intracraniano/etiologia
18.
Acta Neurochir Suppl ; 121: 305-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26463966

RESUMO

Surgically induced brain injury (SBI) results in brain edema and neurological decline. Valproic acid (VA) has been shown to be neuroprotective in several experimental brain diseases. In this study, we investigated the pretreatment effect of VA in a rat model of SBI. A total of 57 male Sprague-Dawley rats were use in four groups: sham, SBI + vehicle, SBI + low dose (100 mg/kg) VA, and SBI + high dose (300 mg/kg) VA. SBI was induced by partially resecting right frontal lobes. Shams underwent identical surgical procedures without brain resection. VA or vehicle was administered subcutaneously 30 min prior to SBI. At 24 and 72 h post SBI, neurobehavior and brain water content were assessed as well as matrix metalloproteinases (MMPs) activities. There was significantly higher brain water content within the right frontal lobe in SBI rats than in shams. Without neurobehavioral improvements, the low-dose but not high-dose VA significantly reduced brain edema at 24 h post SBI. The protection tends to persist to 72 h post SBI. At 24 h post SBI, low-dose VA did not significantly reduce the elevated MMP-9 activity associated with SBI. In conclusion, VA pretreatment attenuated brain edema at 24 h after SBI but lacked MMP inhibition. The single dose VA was not associated with neurobehavioral benefits.


Assuntos
Comportamento Animal/efeitos dos fármacos , Edema Encefálico/fisiopatologia , Lesões Encefálicas/fisiopatologia , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Procedimentos Neurocirúrgicos , Ácido Valproico/farmacologia , Animais , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Lobo Frontal/cirurgia , Complicações Intraoperatórias , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Med Gas Res ; 6(4): 187-193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28217290

RESUMO

Repetitive mild traumatic brain injury (rmTBI) is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart) were induced in juvenile rats. Hyperbaric oxygen (HBO) was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI). Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI) and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures.

20.
Crit Care Med ; 44(6): e403-11, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26646457

RESUMO

OBJECTIVES: To clarify whether hyperbaric oxygen preconditioning can attenuate hyperglycemia-enhanced hemorrhagic transformation and to establish a role for Nod-like receptor protein 3 inflammasome in the pathophysiology of hemorrhagic transformation. DESIGN: Controlled prospective animal study. SETTING: University research laboratory. SUBJECTS: Male Sprague-Dawley rats weighing 260-280 g. INTERVENTIONS: Rats received 1-hour-long hyperbaric oxygen preconditioning for five consecutive days. Hyperglycemic middle cerebral artery occlusion model was induced at 24 hours after the last hyperbaric oxygen exposure. Reactive oxygen species scavenger (N-acetyl-L-cysteine), thioredoxin-interacting protein small interfering RNA, and Nod-like receptor protein 3 small interfering RNA were given in different groups separately to verify the possible pathway. MEASUREMENTS AND MAIN RESULTS: Rats were randomly divided into sham, middle cerebral artery occlusion, middle cerebral artery occlusion + dextrose, middle cerebral artery occlusion + dextrose + normobaric oxygen preconditioning, middle cerebral artery occlusion + dextrose + hyperbaric oxygen, middle cerebral artery occlusion + dextrose + hyperbaric oxygen + N-acetyl-L-cysteine, middle cerebral artery occlusion + dextrose + hyperbaric oxygen + control small interfering RNA, middle cerebral artery occlusion + dextrose + hyperbaric oxygen + thioredoxin-interacting protein small interfering RNA, and middle cerebral artery occlusion + dextrose + hyperbaric oxygen + Nod-like receptor protein 3 small interfering RNA groups. Hyperglycemia was induced by administration of 50% dextrose (6 mL/kg) intraperitoneally 30 minutes before middle cerebral artery occlusion. Control small interfering RNA/thioredoxin-interacting protein small interfering RNA or Nod-like receptor protein 3 small interfering RNA (500 pmol/5 µL) were injected intracerebroventricularly 72 hours before middle cerebral artery occlusion for intervention. The neurologic scores, infarction and hemorrhage volumes, the expression of Nod-like receptor protein 3, and its downstream targets were analyzed. Hyperbaric oxygen preconditioning decreased both infarction and hemorrhage volumes and improved neurobehavioral function. In addition, hyperbaric oxygen preconditioning provided additional protective effects in hemorrhagic transformation, which was independent of infarction volume. The benefits of hyperbaric oxygen preconditioning on hyperglycemic middle cerebral artery occlusion rats were reversed after blocking the reactive oxygen species/thioredoxin-interacting protein/Nod-like receptor protein 3 pathway. CONCLUSIONS: Nod-like receptor protein 3 inflammasome played an important role in hyperglycemia-enhanced hemorrhagic transformation. Hyperbaric oxygen preconditioning attenuated hemorrhagic transformation through reactive oxygen species/thioredoxin-interacting protein/Nod-like receptor protein 3 pathway.


Assuntos
Arteriopatias Oclusivas/metabolismo , Infarto Encefálico/prevenção & controle , Hemorragia Cerebral/prevenção & controle , Oxigenoterapia Hiperbárica , Inflamassomos/metabolismo , Transdução de Sinais , Acetilcisteína/metabolismo , Animais , Arteriopatias Oclusivas/complicações , Infarto Encefálico/etiologia , Infarto Encefálico/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/metabolismo , Glucose , Hiperglicemia/induzido quimicamente , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Artéria Cerebral Média , Estudos Prospectivos , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA